Using Evergreen’s Command-Line Administrator Module

Documentation Interest Group

Part I. Introduction

Chapter 1. About the Documentation

This guide was produced by the Evergreen Documentation Interest Group (DIG),
consisting of numerous volunteers from many different organizations. The DIG
has drawn together, edited, and supplemented pre-existing Documentation
contributed by libraries and consortia running Evergreen that were kind enough
to release their documentation into the creative commons. Please see the
Attributions section for a full list of authors and
contributing organizations. Just like the software it describes, this guide is
a work in progress, continually revised to meet the needs of its users, so if
you find errors or omissions, please let us know, by contacting the DIG
facilitators at docs@evergreen-ils.org.
This guide of Evergreen is intended to meet the needs of library workers
who provide Command-Line based Administrator services.
It is organized into Parts, Chapters, and Sections addressing key
aspect of the software.
Copies of this guid can be accessed in PDF and HTML formats from http://docs.evergreen-ils.org/.

Chapter 2. About Evergreen

Evergreen is an open source library automation software designed to meet the
needs of the very smallest to the very largest libraries and consortia. Through
its staff interface, it facilitates the management, cataloging, and circulation
of library materials, and through its online public access interface it helps
patrons find those materials.
The Evergreen software is freely licensed under the GNU General Public License,
meaning that it is free to download, use view, modify, and share. It has an
active development and user community, as well as several companies offering
migration, support, hosting, and development services.
The community’s development requirements state that Evergreen must be:
	
Stable, even under extreme load.

	
Robust, and capable of handling a high volume of transactions and simultaneous users.

	
Flexible, to accommodate the varied needs of the libraries.

	
Secure, to protect our patrons' privacy and data.

	
User-friendly, to facilitate patron and staff use of the system.

Evergreen, which first luanched in 2006 now powers over 544 libraries of every
type - public, academic, special, school, and even tribal nd home libraries -
in over a dozen countries worldwide.

Part II. Installing Evergreen

Chapter 3. System Requirements

3.1. Server Minimum Requirements

The following are the base requirements setting Evergreen up on a test server:
	
An available desktop, server or virtual image

	
4GB RAM, or more if your server also runs a graphical desktop

	
Linux Operating System (community supports Debian, Ubuntu, or Fedora)

	
Ports 80 and 443 should be opened in your firewall for TCP connections to allow OPAC and staff client connections to the Evergreen server.

3.2. Staff Client Requirements

Staff terminals connect to the central database using the Evergreen staff client, available for download from The Evergreen download page.
The staff client must be installed on each staff workstation and requires at minimum:
	
Windows, Mac OS X, or Linux operating system

	
a reliable high speed Internet connection

	
2GB RAM

	
The staff client uses the TCP protocol on ports 80 and 443 to communicate with the Evergreen server.

Barcode Scanners
Evergreen will work with virtually any barcode scanner – if it worked with your legacy system it should work on Evergreen.
Printers
Evergreen can use any printer configured for your terminal to print receipts, check-out slips, holds lists, etc. The single exception is spine label printing,
which is still under development. Evergreen currently formats spine labels for output to a label roll printer. If you do not have a roll printer manual formatting may be required.

Part III. Installing the Evergreen server

Chapter 4. Preamble: referenced user accounts

In subsequent sections, we will refer to a number of different accounts, as
follows:
	
Linux user accounts:

	
The user Linux account is the account that you use to log onto the
 Linux system as a regular user.

	
The root Linux account is an account that has system administrator
 privileges. On Debian and Fedora you can switch to this account from
 your user account by issuing the su - command and entering the
 password for the root account when prompted. On Ubuntu you can switch
 to this account from your user account using the sudo su - command
 and entering the password for your user account when prompted.

	
The opensrf Linux account is an account that you create when installing
 OpenSRF. You can switch to this account from the root account by
 issuing the su - opensrf command.

	
The postgres Linux account is created automatically when you install
 the PostgreSQL database server. You can switch to this account from the
 root account by issuing the su - postgres command.

	
PostgreSQL user accounts:

	
The evergreen PostgreSQL account is a superuser account that you will
 create to connect to the PostgreSQL database server.

	
Evergreen administrator account:

	
The egadmin Evergreen account is an administrator account for
 Evergreen that you will use to test connectivity and configure your
 Evergreen instance.

Chapter 5. Preamble: developer instructions

Note
Skip this section if you are using an official release tarball downloaded
from http://evergreen-ils.org/egdownloads

Developers working directly with the source code from the Git repository,
rather than an official release tarball, must perform one step before they
can proceed with the ./configure step.
As the user Linux account, issue the following command in the Evergreen
source directory to generate the configure script and Makefiles:
autoreconf -i

Chapter 6. Installing prerequisites

	
PostgreSQL: Version 9.3 is recommended. The minimum supported version
 is 9.1.

	
Linux: Evergreen 2.8 has been tested on Debian Jessie (8.0),
 Debian Wheezy (7.0), Ubuntu Xenial Xerus (16.04),
 Ubuntu Trusty Tahr (14.04), and Fedora.
 If you are running an older version of these distributions, you may want
 to upgrade before upgrading Evergreen. For instructions on upgrading these
 distributions, visit the Debian, Ubuntu or Fedora websites.

	
OpenSRF: The minimum supported version of OpenSRF is 2.4.0.

Evergreen has a number of prerequisite packages that must be installed
before you can successfully configure, compile, and install Evergreen.
	
Begin by installing the most recent version of OpenSRF (2.4.0 or later).
 You can download OpenSRF releases from http://evergreen-ils.org/opensrf-downloads/

	
On some distributions, it is necessary to install PostgreSQL 9.1+ from external
 repositories.

	
Debian (Wheezy and Jessie) and Ubuntu (Trusty and Xenial) comes with
 PostgreSQL 9.1+, so no additional steps are required.

	
Fedora 19 and 20 come with PostgreSQL 9.2+, so no additional steps are required.

	
On Debian and Ubuntu, run aptitude update as the root Linux account to
 retrieve the new packages from the backports repository.

	
Issue the following commands as the root Linux account to install
 prerequisites using the Makefile.install prerequisite installer,
 substituting debian-jessie, debian-wheezy, fedora,
 ubuntu-xenial, or ubuntu-trusty for <osname> below:

make -f Open-ILS/src/extras/Makefile.install <osname>

	
Add the libdbi-libdbd libraries to the system dynamic library path by
 issuing the following commands as the root Linux account:

Note
You should skip this step if installing on Ubuntu Trusty, Ubuntu Xenial or Debian Jessie. The Ubuntu
and Debian Jessie targets use libdbd-pgsql from packages.

Debian Wheezy.

echo "/usr/local/lib/dbd" > /etc/ld.so.conf.d/eg.conf
ldconfig

Fedora.

echo "/usr/lib64/dbd" > /etc/ld.so.conf.d/eg.conf
ldconfig

	
OPTIONAL: Developer additions

To perform certain developer tasks from a Git source code checkout,
additional packages may be required. As the root Linux account:
	
To install packages needed for retriving and managing web dependencies,
 use the <osname>-developer Makefile.install target. Currently,
 this is only needed for building and installing the (preview) browser
 staff client.

make -f Open-ILS/src/extras/Makefile.install <osname>-developer

	
To install packages required for building Evergreen release bundles, use
 the <osname>-packager Makefile.install target.

make -f Open-ILS/src/extras/Makefile.install <osname>-packager

Chapter 7. Optional: Extra steps for browser-based staff client

Note
Skip this entire section if you are using an official release tarball downloaded
from http://evergreen-ils.org/downloads

Note
You make skip the subsection ‘Install dependencies for browser-based staff client’
if you are installing on either Debian Jessie, Ubuntu Trusty, or Ubuntu Xenial and you have
installed the ‘Optional: Developer Additions’ described above. You will still
need to do the steps in ‘Install files for browser-based staff client’ below.

7.1. Install dependencies for browser-based staff client

	
Install Node.js. For more information see also:
 Node.js Installation

Go to a temporary directory
cd /tmp

Clone the code and checkout the necessary version
git clone https://github.com/joyent/node.git
cd node
git checkout -b v0.10.28 v0.10.28

set -j to the number of CPU cores on the server + 1
./configure && make -j2 && sudo make install

update packages
% sudo npm update

	
Install Grunt CLI

% sudo npm install -g grunt-cli

	
Install Bower

% sudo npm install -g bower

7.2. Install files for browser-based staff client

	
Building, Testing, Minification: The remaining steps all take place within
 the staff JS web root:

cd $EVERGREEN_ROOT/Open-ILS/web/js/ui/default/staff/

	
Install Project-local Dependencies. npm inspects the package.json file
 for dependencies and fetches them from the Node package network.

npm install # fetch Grunt dependencies
bower install # fetch JS dependencies

	
Run the build script.

build, run tests, concat+minify
grunt all

Chapter 8. Configuration and compilation instructions

For the time being, we are still installing everything in the /openils/
directory. From the Evergreen source directory, issue the following commands as
the user Linux account to configure and build Evergreen:
PATH=/openils/bin:$PATH ./configure --prefix=/openils --sysconfdir=/openils/conf
make
These instructions assume that you have also installed OpenSRF under /openils/.
If not, please adjust PATH as needed so that the Evergreen configure script
can find osrf_config.

Chapter 9. Installation instructions

	
Once you have configured and compiled Evergreen, issue the following
 command as the root Linux account to install Evergreen, build the server
 portion of the staff client, and copy example configuration files to
 /openils/conf.
 Change the value of the STAFF_CLIENT_STAMP_ID variable to match the version
 of the staff client that you will use to connect to the Evergreen server.

make STAFF_CLIENT_STAMP_ID=rel_name install

	
The server portion of the staff client expects http://hostname/xul/server
 to resolve. Issue the following commands as the root Linux account to
 create a symbolic link pointing to the server subdirectory of the server
 portion of the staff client that we just built using the staff client ID
 rel_name:

cd /openils/var/web/xul
ln -sf rel_name/server server

Chapter 10. Change ownership of the Evergreen files

All files in the /openils/ directory and subdirectories must be owned by the
opensrf user. Issue the following command as the root Linux account to
change the ownership on the files:
chown -R opensrf:opensrf /openils

Chapter 11. Additional Instructions for Developers

Note
Skip this section if you are using an official release tarball downloaded
from http://evergreen-ils.org/egdownloads

Developers working directly with the source code from the Git repository,
rather than an official release tarball, need to install the Dojo Toolkit
set of JavaScript libraries. The appropriate version of Dojo is included in
Evergreen release tarballs. Developers should install the Dojo 1.3.3 version
of Dojo by issuing the following commands as the opensrf Linux account:
wget http://download.dojotoolkit.org/release-1.3.3/dojo-release-1.3.3.tar.gz
tar -C /openils/var/web/js -xzf dojo-release-1.3.3.tar.gz
cp -r /openils/var/web/js/dojo-release-1.3.3/* /openils/var/web/js/dojo/.

Chapter 12. Configure the Apache Web server

	
Use the example configuration files in Open-ILS/examples/apache/ (for
Apache versions below 2.4) or Open-ILS/examples/apache_24/ (for Apache
versions 2.4 or greater) to configure your Web server for the Evergreen
catalog, staff client, Web services, and administration interfaces. Issue the
following commands as the root Linux account:

Debian Wheezy.

cp Open-ILS/examples/apache/eg.conf /etc/apache2/sites-available/
cp Open-ILS/examples/apache/eg_vhost.conf /etc/apache2/
cp Open-ILS/examples/apache/eg_startup /etc/apache2/
Now set up SSL
mkdir /etc/apache2/ssl
cd /etc/apache2/ssl

Ubuntu Trusty, Ubuntu Xenial, and Debian Jessie.

cp Open-ILS/examples/apache_24/eg_24.conf /etc/apache2/sites-available/eg.conf
cp Open-ILS/examples/apache_24/eg_vhost_24.conf /etc/apache2/eg_vhost.conf
cp Open-ILS/examples/apache/eg_startup /etc/apache2/
Now set up SSL
mkdir /etc/apache2/ssl
cd /etc/apache2/ssl

Fedora.

cp Open-ILS/examples/apache_24/eg_24.conf /etc/httpd/conf.d/
cp Open-ILS/examples/apache_24/eg_vhost_24.conf /etc/httpd/eg_vhost.conf
cp Open-ILS/examples/apache/eg_startup /etc/httpd/
Now set up SSL
mkdir /etc/httpd/ssl
cd /etc/httpd/ssl

	
The openssl command cuts a new SSL key for your Apache server. For a
production server, you should purchase a signed SSL certificate, but you can
just use a self-signed certificate and accept the warnings in the staff client
and browser during testing and development. Create an SSL key for the Apache
server by issuing the following command as the root Linux account:

openssl req -new -x509 -days 365 -nodes -out server.crt -keyout server.key

	
As the root Linux account, edit the eg.conf file that you copied into
place.

	
To enable access to the offline upload / execute interface from any
 workstation on any network, make the following change (and note that
 you must secure this for a production instance):

	
(Apache 2.2): Replace Allow from 10.0.0.0/8 with Allow from all

	
(Apache 2.4): Replace Require host 10.0.0.0/8 with Require all granted

	
(Fedora): Change references from the non-existent /etc/apache2/ directory
 to /etc/httpd/.

	
Change the user for the Apache server.

	
(Debian and Ubuntu): As the root Linux account, edit
 /etc/apache2/envvars. Change export APACHE_RUN_USER=www-data to
 export APACHE_RUN_USER=opensrf.

	
(Fedora): As the root Linux account , edit /etc/httpd/conf/httpd.conf.
 Change User apache to User opensrf.

	
As the root Linux account, configure Apache with KeepAlive settings
 appropriate for Evergreen. Higher values can improve the performance of a
 single client by allowing multiple requests to be sent over the same TCP
 connection, but increase the risk of using up all available Apache child
 processes and memory.

	
(Debian and Ubuntu): Edit /etc/apache2/apache2.conf.

	
Change KeepAliveTimeout to 1.

	
Change MaxKeepAliveRequests to 100.

	
(Fedora): Edit /etc/httpd/conf/httpd.conf.

	
Change KeepAliveTimeout to 1.

	
Change MaxKeepAliveRequests to 100.

	
As the root Linux account, configure the prefork module to start and keep
 enough Apache servers available to provide quick responses to clients without
 running out of memory. The following settings are a good starting point for a
 site that exposes the default Evergreen catalogue to the web:

Debian Wheezy (/etc/apache2/apache2.conf) and Fedora (/etc/httpd/conf/httpd.conf).

<IfModule mpm_prefork_module>
 StartServers 15
 MinSpareServers 5
 MaxSpareServers 15
 MaxClients 75
 MaxRequestsPerChild 500
</IfModule>

Ubuntu Trusty, Ubuntu Xenial, Debian Jessie (/etc/apache2/mods-available/mpm_prefork.conf).

<IfModule mpm_prefork_module>
 StartServers 15
 MinSpareServers 5
 MaxSpareServers 15
 MaxRequestWorkers 75
 MaxConnectionsPerChild 500
</IfModule>

	
(Ubuntu Trusty, Ubuntu Xenial, Debian Jessie) As the root user,
 enable the mpm_prefork module:

a2dismod mpm_event
a2enmod mpm_prefork

	
(Fedora): As the root Linux account, edit the /etc/httpd/eg_vhost.conf
 file to change references from the non-existent /etc/apache2/ directory
 to /etc/httpd/.

	
(Debian Wheezy): As the root Linux account, enable the Evergreen site:

a2dissite default # OPTIONAL: disable the default site (the "It Works" page)
a2ensite eg.conf
(Ubuntu Trusty, Ubuntu Xenial, Debian Jessie):
a2dissite 000-default # OPTIONAL: disable the default site (the "It Works" page)
a2ensite eg.conf

	
(Ubuntu): As the root Linux account, enable Apache to write
 to the lock directory; this is currently necessary because Apache
 is running as the opensrf user:

chown opensrf /var/lock/apache2

Learn more about additional Apache options in the following sections:
	
Apache Rewrite Tricks

	
Apache Access Handler Perl Module

Chapter 13. Configure OpenSRF for the Evergreen application

There are a number of example OpenSRF configuration files in /openils/conf/
that you can use as a template for your Evergreen installation. Issue the
following commands as the opensrf Linux account:
cp -b /openils/conf/opensrf_core.xml.example /openils/conf/opensrf_core.xml
cp -b /openils/conf/opensrf.xml.example /openils/conf/opensrf.xml
When you installed OpenSRF, you created four Jabber users on two
separate domains and edited the opensrf_core.xml file accordingly. Please
refer back to the OpenSRF README and, as the opensrf Linux account, edit the
Evergreen version of the opensrf_core.xml file using the same Jabber users
and domains as you used while installing and testing OpenSRF.
Note
The -b flag tells the cp command to create a backup version of the
destination file. The backup version of the destination file has a tilde (~)
appended to the file name, so if you have forgotten the Jabber users and
domains, you can retrieve the settings from the backup version of the files.

eg_db_config, described in Creating the Evergreen database, sets the database connection information in opensrf.xml for you.

Chapter 14. Configure action triggers for the Evergreen application

Action Triggers provide hooks for the system to perform actions when a given
event occurs; for example, to generate reminder or overdue notices, the
checkout.due hook is processed and events are triggered for potential actions
if there is no checkin time.
To enable the default set of hooks, issue the following command as the
opensrf Linux account:
cp -b /openils/conf/action_trigger_filters.json.example /openils/conf/action_trigger_filters.json
For more information about configuring and using action triggers, see
Notifications / Action Triggers.

Chapter 15. Creating the Evergreen database

15.1. Setting up the PostgreSQL server

For production use, most libraries install the PostgreSQL database server on a
dedicated machine. Therefore, by default, the Makefile.install prerequisite
installer does not install the PostgreSQL 9 database server that is required
by every Evergreen system. You can install the packages required by Debian or
Ubuntu on the machine of your choice using the following commands as the
root Linux account:
(Debian / Ubuntu / Fedora) Installing PostgreSQL server packages. Each OS build target provides the postgres server installation packages
required for each operating system. To install Postgres server packages,
use the make target postgres-server-<OSTYPE>. Choose the most appropriate
command below based on your operating system.
make -f Open-ILS/src/extras/Makefile.install postgres-server-debian-jessie
make -f Open-ILS/src/extras/Makefile.install postgres-server-debian-wheezy
make -f Open-ILS/src/extras/Makefile.install postgres-server-ubuntu-trusty
make -f Open-ILS/src/extras/Makefile.install postgres-server-ubuntu-xenial
make -f Open-ILS/src/extras/Makefile.install postgres-server-fedora
(Fedora) Postgres initialization. Installing Postgres on Fedora also requires you to initialize the PostgreSQL
cluster and start the service. Issue the following commands as the root user:
postgresql-setup initdb
systemctl start postgresql
For a standalone PostgreSQL server, install the following Perl modules for your
distribution as the root Linux account:
(Debian Wheezy, Ubuntu Trusty, and Ubuntu Xenial). No extra modules required for these distributions.
(Fedora).

cpan Rose::URI

You need to create a PostgreSQL superuser to create and access the database.
Issue the following command as the postgres Linux account to create a new
PostgreSQL superuser named evergreen. When prompted, enter the new user’s
password:
createuser -s -P evergreen
Enabling connections to the PostgreSQL database. Your PostgreSQL database may be configured by default to prevent connections,
for example, it might reject attempts to connect via TCP/IP or from other
servers. To enable TCP/IP connections from localhost, check your pg_hba.conf
file, found in the /etc/postgresql/ directory on Debian and Ubuntu, and in
the /var/lib/pgsql/data/ directory on Fedora. A simple way to enable TCP/IP
connections from localhost to all databases with password authentication, which
would be suitable for a test install of Evergreen on a single server, is to
ensure the file contains the following entries before any "host … ident"
entries:
host all all ::1/128 md5
host all all 127.0.0.1/32 md5
When you change the pg_hba.conf file, you will need to reload PostgreSQL to
make the changes take effect. For more information on configuring connectivity
to PostgreSQL, see
http://www.postgresql.org/docs/devel/static/auth-pg-hba-conf.html

15.2. Creating the Evergreen database and schema

Once you have created the evergreen PostgreSQL account, you also need to
create the database and schema, and configure your configuration files to point
at the database server. Issue the following command as the root Linux account
from inside the Evergreen source directory, replacing <user>, <password>,
<hostname>, <port>, and <dbname> with the appropriate values for your
PostgreSQL database (where <user> and <password> are for the evergreen
PostgreSQL account you just created), and replace <admin-user> and <admin-pass>
with the values you want for the egadmin Evergreen administrator account:
perl Open-ILS/src/support-scripts/eg_db_config --update-config \
 --service all --create-database --create-schema --create-offline \
 --user <user> --password <password> --hostname <hostname> --port <port> \
 --database <dbname> --admin-user <admin-user> --admin-pass <admin-pass>
This creates the database and schema and configures all of the services in
your /openils/conf/opensrf.xml configuration file to point to that database.
It also creates the configuration files required by the Evergreen cgi-bin
administration scripts, and sets the user name and password for the egadmin
Evergreen administrator account to your requested values.
You can get a complete set of options for eg_db_config by passing the
--help parameter.

15.3. Loading sample data

If you add the --load-all-sample parameter to the eg_db_config command,
a set of authority and bibliographic records, call numbers, copies, staff
and regular users, and transactions will be loaded into your target
database. This sample dataset is commonly referred to as the concerto
sample data, and can be useful for testing out Evergreen functionality and
for creating problem reports that developers can easily recreate with their
own copy of the concerto sample data.

15.4. Creating the database on a remote server

In a production instance of Evergreen, your PostgreSQL server should be
installed on a dedicated server.
15.4.1. PostgreSQL 9.1 and later

To create the database instance on a remote database server running PostgreSQL
9.1 or later, simply use the --create-database flag on eg_db_config.

Chapter 16. Starting Evergreen

	
As the root Linux account, start the memcached and ejabberd services
(if they aren’t already running):

/etc/init.d/ejabberd start
/etc/init.d/memcached start

	
As the opensrf Linux account, start Evergreen. The -l flag in the
following command is only necessary if you want to force Evergreen to treat the
hostname as localhost; if you configured opensrf.xml using the real
hostname of your machine as returned by perl -ENet::Domain 'print
Net::Domain::hostfqdn() . "\n";', you should not use the -l flag.

osrf_control -l --start-all
	
If you receive the error message bash: osrf_control: command not found,
 then your environment variable PATH does not include the /openils/bin
 directory; this should have been set in the opensrf Linux account’s
 .bashrc configuration file. To manually set the PATH variable, edit the
 configuration file ~/.bashrc as the opensrf Linux account and add the
 following line:

export PATH=$PATH:/openils/bin

	
As the opensrf Linux account, generate the Web files needed by the staff
 client and catalogue and update the organization unit proximity (you need to do
 this the first time you start Evergreen, and after that each time you change the library org unit configuration.
):

autogen.sh

	
As the root Linux account, restart the Apache Web server:

/etc/init.d/apache2 restart
If the Apache Web server was running when you started the OpenSRF services, you
might not be able to successfully log in to the OPAC or staff client until the
Apache Web server is restarted.

Chapter 17. Testing connections to Evergreen

Once you have installed and started Evergreen, test your connection to
Evergreen via srfsh. As the opensrf Linux account, issue the following
commands to start srfsh and try to log onto the Evergreen server using the
egadmin Evergreen administrator user name and password that you set using the
eg_db_config command:
/openils/bin/srfsh
srfsh% login <admin-user> <admin-pass>
You should see a result like:
Received Data: "250bf1518c7527a03249858687714376"

Request Completed Successfully
Request Time in seconds: 0.045286

Received Data: {
 "ilsevent":0,
 "textcode":"SUCCESS",
 "desc":" ",
 "pid":21616,
 "stacktrace":"oils_auth.c:304",
 "payload":{
 "authtoken":"e5f9827cc0f93b503a1cc66bee6bdd1a",
 "authtime":420
 }
}

Request Completed Successfully
Request Time in seconds: 1.336568

If this does not work, it’s time to do some troubleshooting.
	
As the opensrf Linux account, run the settings-tester.pl script to see
 if it finds any system configuration problems. The script is found at
 Open-ILS/src/support-scripts/settings-tester.pl in the Evergreen source
 tree.

	
Follow the steps in the troubleshooting guide.

	
If you have faithfully followed the entire set of installation steps
 listed here, you are probably extremely close to a working system.
 Gather your configuration files and log files and contact the
 Evergreen development
mailing list for assistance before making any drastic changes to your system
 configuration.

Chapter 18. Getting help

Need help installing or using Evergreen? Join the mailing lists at
http://evergreen-ils.org/communicate/mailing-lists/ or contact us on the Freenode
IRC network on the #evergreen channel.

Chapter 19. License

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative
Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Chapter 20. Installing the Staff Client

20.1. Installing on Windows

Official Evergreen releases have corresponding Windows based staff clients ready
to use.
	
Download the staff client from http://www.open-ils.org/downloads.php.

Note
The version of your staff client will
need to match the version of your Evergreen server. If you are unsure about the
version of your Evergreen server, contact your system administrator.

	
Click on the downloaded Evergreen setup file.

	
Click Next to begin installation:

[image: media/staff_client_installation_0.png]

	
Click Next to accept
destination folder.

[image: media/staff_client_installation_1.png]

	
Click Install.

[image: media/staff_client_installation_2.png]

	
A pop-up should appear indicating that Evergreen has been installed.
Click Finish to complete the installation.

[image: media/staff_client_installation_3.png]

When you login to Evergreen from the workstation for the first time, you will
also need to register your workstation.

20.2. Installing on Linux

	
On the Evergreen server, navigate to the staff_client directory inside
 the Evergreen source:

cd /path/to/Evergreen/Open-ILS/xul/staff_client

	
As the root user, build release versions of staff clients for both
 32-bit and 64-bit Linux systems:

make rigrelease rebuild linux32-updates-client linux64-updates-client
make install
This builds and copies two staff client tarballs for Linux to the updates
directory on the Web server.

	
As the root user, reset the ownership of the Evergreen install directory
 to the opensrf user. For example, if your install directory is /openils:

chown -R opensrf:opensrf /openils

	
On your staff client workstation, download the 32-bit or 64-bit version of
 the staff client from your Web server at
 http://hostname/updates/manualupdate.html (where hostname represents the
 hostname of your Web server).

	
On your staff client workstation, create a directory with the name of your
 staff client and version.

	
Extract the tar files into that directory.

	
Within the directory, click on the evergreen file to start the program.

Or, you can run the program from a terminal (command line). For example, if the
staff client files were extracted to a directory called evergreen_client in
your home directory, you can run it with:
~/evergreen_client/evergreen

20.3. Registering a Workstation

Before you can connect to Evergreen from your staff client, you will need to
register your workstation when you try to login.
Note
You will need the permissions to add workstations to your network. If you do
not have these permissions, ask your system administrator for assistance.

	
When you login for the first time, a red box will appear around your workstation
information on the right side of the screen.

[image: media/staff_client_installation_4.png]

	
Create a unique workstation name or use the default computer name provided.

	
Click Register

	
You will now be able to log into the system.

20.4. Removing Staff Client Preferences

20.4.1. Windows

When you uninstall the Evergreen staff client code from your system, the staff
client preferences and cached data are not removed from your system. This can
be a problem if, for example, you have registered your workstation with the
wrong library; or if you have chosen a display language (locale) that is broken
and will not let you start up the client again
On Windows, you can uninstall the Evergreen staff client code using the
Add/Remove Programs menu.
To remove the staff client preferences and cached data entirely on Windows,
there are two directories that you must delete completely (where <profile>
represents your user profile name):
	
C:\Documents and Settings\<profile>\Application Data\OpenILS

	
C:\Documents and Settings\<profile>\Local Settings\Application Data\OpenILS

You might need to change the preferences in Windows Explorer to display hidden
files (Tools → Folder Options… → View).

20.4.2. Linux

To remove the staff client preferences and cached data from your user account
on Linux, there is one directory that you must delete completely:
rm -fr ~/.openils

Chapter 21. Upgrading the Evergreen Server

Before upgrading, it is important to carefully plan an upgrade strategy to minimize system downtime and service interruptions.
All of the steps in this chapter are to be completed from the command line.
21.1. Software Prerequisites

	
PostgreSQL: Version 9.3 is recommended. The minimum supported version
 is 9.1.

	
Linux: Evergreen 2.10.1 has been tested on Debian Jessie (8.0),
 Debian Wheezy (7.0), Ubuntu Xenial Xerus (16.04), Ubuntu Trusty Tahr (14.04),
 and Fedora.
 If you are running an older version of these distributions, you may want
 to upgrade before upgrading Evergreen. For instructions on upgrading these
 distributions, visit the Debian, Ubuntu or Fedora websites.

	
OpenSRF: The minimum supported version of OpenSRF is 2.4.0.

In the following instructions, you are asked to perform certain steps as either the root or opensrf user.
	
Debian: To become the root user, issue the su command and enter the password of the root user.

	
Ubuntu: To become the root user, issue the sudo su command and enter the password of your current user.

To switch from the root user to a different user, issue the su - [user]
command; for example, su - opensrf. Once you have become a non-root user, to
become the root user again simply issue the exit command.

21.2. Upgrade the Evergreen code

The following steps guide you through a simplistic upgrade of a production
server. You must adjust these steps to accommodate your customizations such
as catalogue skins.
	
Stop Evergreen and back up your data:

	
As root, stop the Apache web server.

	
As the opensrf user, stop all Evergreen and OpenSRF services:

osrf_control --localhost --stop-all

	
Back up the /openils directory.

	
Upgrade OpenSRF. Download and install the latest version of OpenSRF from
the OpenSRF download page.

	
As the opensrf user, download and extract Evergreen 2.10.1:

wget https://evergreen-ils.org/downloads/Evergreen-ILS-2.10.1.tar.gz
tar xzf Evergreen-ILS-2.10.1.tar.gz
Note
For the latest edition of Evergreen, check the Evergreen download page and adjust upgrading instructions accordingly.

	
As the root user, install the prerequisites:

cd /home/opensrf/Evergreen-ILS-2.10.1
On the next command, replace [distribution] with one of these values for your
distribution of Debian or Ubuntu:

	
debian-jessie for Debian Jessie (8.0) (See Bug 134222 if you want to use EDI)

	
debian-wheezy for Debian Wheezy (7.0)

	
ubuntu-xenial for Ubuntu Xenial Xerus (16.04) (EDI compatibility in progress)

	
ubuntu-trusty for Ubuntu Trusty Tahr (14.04) (See Bug 134222 if you want to use EDI)

	
fedora for Fedora

make -f Open-ILS/src/extras/Makefile.install [distribution]

	
As the opensrf user, configure and compile Evergreen:

cd /home/opensrf/Evergreen-ILS-2.10.1
PATH=/openils/bin:$PATH ./configure --prefix=/openils --sysconfdir=/openils/conf
make
These instructions assume that you have also installed OpenSRF under /openils/. If not, please adjust PATH as needed so that the Evergreen configure script can find osrf_config.

	
As the root user, install Evergreen:

cd /home/opensrf/Evergreen-ILS-2.10.1
make STAFF_CLIENT_STAMP_ID=rel_2_10_1 install

	
As the root user, change all files to be owned by the opensrf user and group:

chown -R opensrf:opensrf /openils

	
As the opensrf user, update the server symlink in /openils/var/web/xul/:

cd /openils/var/web/xul/
rm server
ln -sf rel_2_10_1/server server

	
As the opensrf user, update opensrf_core.xml and opensrf.xml by copying the
 new example files (/openils/conf/opensrf_core.xml.example and
 /openils/conf/opensrf.xml). The -b option creates a backup copy of the old file.

cp -b /openils/conf/opensrf_core.xml.example /openils/conf/opensrf_core.xml
cp -b /openils/conf/opensrf.xml.example /openils/conf/opensrf.xml
Caution
Copying these configuration files will remove any customizations you have made to them. Remember to redo your customizations after copying them.

	
As the opensrf user, update the configuration files:

cd /home/opensrf/Evergreen-ILS-2.10.1
perl Open-ILS/src/support-scripts/eg_db_config --update-config --service all \
--create-offline --database evergreen --host localhost --user evergreen --password evergreen

	
As the root user, update the Apache files:

Use the example configuration files in Open-ILS/examples/apache/ (for
Apache versions below 2.4) or Open-ILS/examples/apache_24/ (for Apache
versions 2.4 or greater) to configure your Web server for the Evergreen
catalog, staff client, Web services, and administration interfaces. Issue the
following commands as the root Linux account:
Caution
Copying these Apache configuration files will remove any customizations you have made to them. Remember to redo your customizations after copying them.
For example, if you purchased an SSL certificate, you will need to edit eg.conf to point to the appropriate SSL certificate files.
The diff command can be used to show the differences between the distribution version and your customized version. diff <customized file> <dist file>

	
Update /etc/apache2/eg_startup by copying the example from Open-ILS/examples/apache/eg_startup.

cp /home/opensrf/Evergreen-ILS-2.10.1/Open-ILS/examples/apache/eg_startup /etc/apache2/eg_startup

	
Update /etc/apache2/eg_vhost.conf by copying the example from Open-ILS/examples/apache/eg_vhost.conf.

cp /home/opensrf/Evergreen-ILS-2.10.1/Open-ILS/examples/apache/eg_vhost.conf /etc/apache2/eg_vhost.conf

	
Update /etc/apache2/sites-available/eg.conf by copying the example from Open-ILS/examples/apache/eg.conf.

cp /home/opensrf/Evergreen-ILS-2.10.1/Open-ILS/examples/apache/eg.conf /etc/apache2/sites-available/eg.conf

21.3. Upgrade the Evergreen database schema

The upgrade of the Evergreen database schema is the lengthiest part of the
upgrade process for sites with a significant amount of production data.
Before running the upgrade script against your production Evergreen database,
back up your database, restore it to a test server, and run the upgrade script
against the test server. This enables you to determine how long the upgrade
will take and whether any local customizations present problems for the
stock upgrade script that require further tailoring of the upgrade script.
The backup also enables you to cleanly restore your production data if
anything goes wrong during the upgrade.
Note
Evergreen provides incremental upgrade scripts that allow you to upgrade
from one minor version to the next until you have the current version of
the schema. For example, if you want to upgrade from 2.5.1 to 2.10.1, you
would run the following upgrade scripts:
	
2.5.1-2.5.2-upgrade-db.sql

	
2.5.2-2.5.3-upgrade-db.sql

	
2.5.3-2.6.0-upgrade-db.sql (this is a major version upgrade)

	
2.6.2-2.6.3-upgrade-db.sql

	
2.6.3-2.7.0-upgrade-db.sql (this is a major version upgrade)

	
2.7.0-2.7.1-upgrade-db.sql

	
2.7.1-2.7.2-upgrade-db.sql

	
2.7.2-2.7.3-upgrade-db.sql

	
2.7.3-2.7.4-upgrade-db.sql

	
2.7.4-2.8.0-upgrade-db.sql (this is a major version upgrade)

	
2.8.0-2.8.1-upgrade-db.sql

	
2.8.1-2.8.2-upgrade-db.sql

	
2.8.2-2.8.3-upgrade-db.sql

	
2.8.3-2.8.4-upgrade-db.sql

	
2.8.4-2.9.0-upgrade-db.sql (this is a major version upgrade)

	
2.9.0-2.9.1-upgrade-db.sql

	
2.9.1-2.9.2-upgrade-db.sql

	
2.9.2-2.9.3-upgrade-db.sql

	
2.9.3-2.10.0-upgrade-db.sql

	
2.10.0-2.10.1-upgrade-db.sql

Note that you do not want to run additional 2.5 scripts to upgrade to the
newest version of 2.5, since currently there is no automated way to upgrade
from 2.5.4+ to 2.6. Only upgrade as far as necessary to reach the major
version upgrade script (in this example, as far as 2.5.3).
To upgrade across multiple major versions (e.g. from 2.3.0 to 2.10.1), use
the same logic to utilize the provided major version upgrade scripts. For
example:
	
2.3-2.4.0-upgrade-db.sql

	
2.3-2.4-supplemental.sh

	
(run all incremental scripts from 2.4.0 to 2.4.3)

	
2.4.3-2.5.0-upgrade-db.sql

	
(run all incremental scripts from 2.5.0 to 2.5.3)

	
2.5.3-2.6.0-upgrade-db.sql

	
(run all incremental scripts from 2.6.0 to 2.6.3)

	
2.6.3-2.7.0-upgrade-db.sql

	
(run all incremental scripts from 2.7.0 to 2.7.4)

	
2.7.4-2.8.0-upgrade-db.sql

	
(run all incremental scripts from 2.8.0 to 2.8.4)

	
2.8.4-2.9.0-upgrade-db.sql

	
(run all incremental scripts from 2.9.0 to 2.9.3)

	
2.9.3-2.10.0-upgrade-db.sql

	
(run all incremental scripts from 2.10.0 to 2.10.1)

Caution
Pay attention to error output as you run the upgrade scripts. If you encounter errors
that you cannot resolve yourself through additional troubleshooting, please
report the errors to the Evergreen
Technical Discussion List.

Run the following steps (including other upgrade scripts, as noted above)
as a user with the ability to connect to the database server.
cd /home/opensrf/Evergreen-ILS-2.10.0/Open-ILS/src/sql/Pg
psql -U evergreen -h localhost -f version-upgrade/2.10.0-2.10.1-upgrade-db.sql evergreen
Tip
After the some database upgrade scripts finish, you may see a
note on how to reingest your bib records. You may run this after you have
completed the entire upgrade and tested your system. Reingesting records
may take a long time depending on the number of bib records in your system.

21.4. Restart Evergreen and Test

	
As the root user, restart memcached to clear out all old user sessions.

service memcached restart

	
As the opensrf user, start all Evergreen and OpenSRF services:

osrf_control --localhost --start-all

	
As the opensrf user, run autogen to refresh the static organizational data files:

cd /openils/bin
./autogen.sh

	
Start srfsh and try logging in using your Evergreen username and password:

/openils/bin/srfsh
srfsh% login username password
You should see a result like:
Received Data: "250bf1518c7527a03249858687714376"

 Request Completed Successfully
 Request Time in seconds: 0.045286

 Received Data: {
 "ilsevent":0,
 "textcode":"SUCCESS",
 "desc":" ",
 "pid":21616,
 "stacktrace":"oils_auth.c:304",
 "payload":{
 "authtoken":"e5f9827cc0f93b503a1cc66bee6bdd1a",
 "authtime":420
 }

 }

 Request Completed Successfully
 Request Time in seconds: 1.336568

If this does not work, it’s time to do some troubleshooting.

	
As the root user, start the Apache web server.

If you encounter errors, refer to the troubleshooting section
of this documentation for tips on finding solutions and seeking further assistance
from the Evergreen community.

21.5. Review Release Notes

Review the 2.10 release notes for other tasks
that need to be done after upgrading. If you have upgraded over several
major versions, you will need to review the release notes for each version also.

Chapter 22. Setting Up EDI Acquisitions

22.1. Introduction

Electronic Data Interchange (EDI) is used to exchange information between
participating vendors and Evergreen. This chapter contains technical
information for installation and configuration of the components necessary
to run EDI Acquisitions for Evergreen.

22.2. Installation

22.2.1. Install EDI Translator

The EDI Translator is used to convert data into EDI format. It runs
on localhost and listens on port 9191 by default. This is controlled via
the edi_webrick.cnf file located in the edi_translator directory. It should
not be necessary to edit this configuration if you install EDI Translator
on the same server used for running Action/Triggers events.
Note
If you are running Evergreen with a multi-server configuration, make sure
to install EDI Translator on the same server used for Action/Trigger event
generation.

Steps for Installing
	
As the opensrf user, copy the EDI Translator code found in
 Open-ILS/src/edi_translator to somewhere accessible
 (for example, /openils/var/edi):

cp -r Open-ILS/src/edi_translator /openils/var/edi

	
Navigate to where you have saved the code to begin next step:

cd /openils/var/edi

	
Next, as the root user (or a user with sudo rights), install the
 dependencies, via "install.sh". This will perform some apt-get routines
 to install the code needed for the EDI translator to function.
 (Note: subversion must be installed first)

./install.sh

	
Now, we’re ready to start "edi_webrick.bash" which is the script that calls
 the "Ruby" code to translate EDI. This script needs to be started in
 order for EDI to function so please take appropriate measures to ensure this
 starts following reboots/upgrades/etc. As the opensrf user:

./edi_webrick.bash

	
You can check to see if EDI translator is running.

	
Using the command "ps aux | grep edi" should show you something similar
 if the script is running properly:

root 30349 0.8 0.1 52620 10824 pts/0 S 13:04 0:00 ruby ./edi_webrick.rb

	
To shutdown EDI Translator you can use something like pkill (assuming
 no other ruby processes are running on that server):

kill -INT $(pgrep ruby)

22.2.2. Install EDI Scripts

The EDI scripts are "edi_pusher.pl" and "edi_fetcher.pl" and are used to
"push" and "fetch" EDI messages for configured EDI accounts.
	
As the opensrf user, copy edi_pusher.pl and edi_fetcher.pl from
 Open-ILS/src/support-scripts into /openils/bin:

cp Open-ILS/src/support-scripts/edi_pusher.pl /openils/bin
cp Open-ILS/src/support-scripts/edi_fetcher.pl /openils/bin

	
Setup the edi_pusher.pl and edi_fetcher.pl scripts to run as cron jobs
 in order to regularly push and receive EDI messages.

	
Add to the opensrf user’s crontab the following entries:

10 * * * * cd /openils/bin && /usr/bin/perl ./edi_pusher.pl > /dev/null
0 1 * * * cd /openils/bin && /usr/bin/perl ./edi_fetcher.pl > /dev/null

	
The example for edi_pusher.pl sets the script to run at
 10 minutes past the hour, every hour.

	
The example for edi_fetcher.pl sets the script to run at
 1 AM every night.

Note
You may choose to run the EDI scripts more or less frequently based on the
necessary response times from your vendors.

22.3. Configuration

22.3.1. Configuring Providers

Look in Admin > Server Administration > Acquisitions > Providers
	Column 	Description/Notes
	Provider Name
	A unique name to identify the provider

	Code
	A unique code to identify the provider

	Owner
	The org unit who will "own" the provider.

	Currency
	The currency format the provider accepts

	Active
	Whether or not the Provider is "active" for use

	Default Claim Policy
	??

	EDI Default
	The default "EDI Account" to use (see EDI Accounts Configuration)

	Email
	The email address for the provider

	Fax Phone
	A fax number for the provider

	Holdings Tag
	The holdings tag to be utilized (usually 852, for Evergreen)

	Phone
	A phone number for the provider

	Prepayment Required
	Whether or not prepayment is required

	SAN
	The vendor provided, org unit specific SAN code

	URL
	The vendor website

22.3.2. Configuring EDI Accounts

Look in Admin > Server Administration > Acquisitions > EDI Accounts
	Column 	Description/Notes
	Label
	A unique name to identify the provider

	Host
	FTP/SFTP/SSH hostname - vendor assigned

	Username
	FTP/SFTP/SSH username - vendor assigned

	Password
	FTP/SFTP/SSH password - vendor assigned

	Account
	Vendor assigned account number associated with your organization

	Owner
	The organizational unit who owns the EDI account

	Last Activity
	The date of last activity for the account

	Provider
	This is a link to one of the "codes" in the "Providers" interface

	Path
	The path on the vendor’s server where Evergreen will send it’s outgoing .epo files

	Incoming Directory
	The path on the vendor’s server where "incoming" .epo files are stored

	Vendor Account Number
	Vendor assigned account number.

	Vendor Assigned Code
	Usually a sub-account designation. Can be used with or without the Vendor Account Number.

22.3.3. Configuring Organizational Unit SAN code

Look in Admin > Server Settings > Organizational Units
This interface allows a library to configure their SAN, alongside
their address, phone, etc.

22.4. Troubleshooting

22.4.1. PO JEDI Template Issues

Some libraries may run into issues with the action/trigger (PO JEDI).
The template has to be modified to handle different vendor codes that
may be used. For instance, if you use "ingra" instead of INGRAM this
may cause a problem because they are hardcoded in the template. The
following is an example of one modification that seems to work.
Original template has:

"buyer":[
 [% IF target.provider.edi_default.vendcode && (target.provider.code == 'BT' || target.provider.name.match('(?i)^BAKER & TAYLOR')) -%]
 {"id-qualifier": 91, "id":"[% target.ordering_agency.mailing_address.san _ ' ' _ target.provider.edi_default.vendcode %]"}
 [%- ELSIF target.provider.edi_default.vendcode && target.provider.code == 'INGRAM' -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"},
 {"id-qualifier": 91, "id":"[% target.provider.edi_default.vendcode %]"}
 [%- ELSE -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"}
 [%- END -%]
],

Modified template has the following where it matches on provider SAN instead of code:

"buyer":[
 [% IF target.provider.edi_default.vendcode && (target.provider.san == '1556150') -%]
 {"id-qualifier": 91, "id":"[% target.ordering_agency.mailing_address.san _ ' ' _ target.provider.edi_default.vendcode %]"}
 {"id-qualifier": 91, "id":"[% target.ordering_agency.mailing_address.san _ ' ' _ target.provider.edi_default.vendcode %]"}
 [%- ELSIF target.provider.edi_default.vendcode && (target.provider.san == '1697978') -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"},
 {"id-qualifier": 91, "id":"[% target.provider.edi_default.vendcode %]"}
 [%- ELSE -%]
 {"id":"[% target.ordering_agency.mailing_address.san %]"}
 [%- END -%]
],

Part IV. System Configuration

Chapter 23. Describing your people

Many different members of your staff will use your Evergreen system to perform
the wide variety of tasks required of the library.
When the Evergreen installation was completed, a number of permission groups
should have been automatically created. These permission groups are:
	
Users

	
Patrons

	
Staff

	
Catalogers

	
Circulators

	
Acquisitions

	
Acquisitions Administrator

	
Cataloging Administrator

	
Circulation Administrator

	
Local Administrator

	
Serials

	
System Administrator

	
Global Administrator

	
Data Review

	
Volunteers

Each of these permission groups has a different set of permissions connected to
them that allow them to do different things with the Evergreen system. Some of
the permissions are the same between groups; some are different. These
permissions are typically tied to one or more working location (sometimes
referred to as a working organizational unit or work OU) which affects where a
particular user can exercise the permissions they have been granted.
23.1. Setting the staff user’s working location

To grant a working location to a staff user in the staff client:
	
Search for the patron. Select Search > Search for Patrons from the top menu.

	
When you retrieve the correct patron record, select Other > User Permission
 Editor from the upper right corner. The permissions associated with this
 account appear in the right side of the client, with the Working Location
 list at the top of the screen.

	
The Working Location list displays the Organizational Units in your
 consortium. Select the check box for each Organization Unit where this user
 needs working permissions. Clear any other check boxes for Organization Units
 where the user no longer requires working permissions.

	
Scroll all the way to the bottom of the page and click Save. This user
 account is now ready to be used at your library.

As you scroll down the page you will come to the Permissions list. These are
the permissions that are given through the Permission Group that you assigned
to this user. Depending on your own permissions, you may also have the ability
to grant individual permissions directly to this user.

23.2. Comparing approaches for managing permissions

The Evergreen community uses two different approaches to deal with managing
permissions for users:
	
Staff Client

Evergreen libraries that are most comfortable using the staff client tend to
manage permissions by creating different profiles for each type of user. When
you create a new user, the profile you assign to the user determines their
basic set of permissions. This approach requires many permission groups that
contain overlapping sets of permissions: for example, you might need to create
a Student Circulator group and a Student Cataloger group. Then if a new
employee needs to perform both of these roles, you need to create a third
Student Cataloger / Circulator group representing the set of all of the
permissions of the first two groups.
The advantage to this approach is that you can maintain the permissions
entirely within the staff client; a drawback to this approach is that it can be
challenging to remember to add a new permission to all of the groups. Another
drawback of this approach is that the user profile is also used to determine
circulation and hold rules, so the complexity of your circulation and hold
rules might increase significantly.

	
Database Access

Evergreen libraries that are comfortable manipulating the database directly
tend to manage permissions by creating permission groups that reflect discrete
roles within a library. At the database level, you can make a user belong to
many different permission groups, and that can simplify your permission
management efforts. For example, if you create a Student Circulator group and
a Student Cataloger group, and a new employee needs to perform both of these
roles, you can simply assign them to both of the groups; you do not need to
create an entirely new permission group in this case. An advantage of this
approach is that the user profile can represent only the user’s borrowing
category and requires only the basic Patrons permissions, which can simplify
your circulation and hold rules.

Permissions and profiles are not carved in stone. As the system administrator,
you can change them as needed. You may set and alter the permissions for each
permission group in line with what your library, or possibly your consortium,
defines as the appropriate needs for each function in the library.

23.3. Managing permissions in the staff client

In this section, we’ll show you in the staff client:
	
where to find the available permissions

	
where to find the existing permission groups

	
how to see the permissions associated with each group

	
how to add or remove permissions from a group

We also provide an appendix with a listing of suggested minimum permissions for
some essential groups. You can compare the existing permissions with these
suggested permissions and, if any are missing, you will know how to add them.
23.3.1. Where to find existing permissions and what they mean

In the staff client, in the upper right corner of the screen, click on Admin >
Server Administration > Permissions.
The list of available permissions will appear on screen and you can scroll down
through them to see permissions that are already available in your default
installation of Evergreen.
There are over 500 permissions in the permission list. They appear in two
columns: Code and Description. Code is the name of the permission as it
appear in the Evergreen database. Description is a brief note on what the
permission allows. All of the most common permissions have easily
understandable descriptions.

23.3.2. Where to find existing Permission Groups

In the staff client, in the upper right corner of the screen, navigate to Admin
> Server Administration > Permission Groups.
Two panes will open on your screen. The left pane provides a tree view of
existing Permission Groups. The right pane contains two tabs: Group
Configuration and Group Permissions.
In the left pane, you will find a listing of the existing Permission Groups
which were installed by default. Click on the + sign next to any folder to
expand the tree and see the groups underneath it. You should see the Permission
Groups that were listed at the beginning of this chapter. If you do not and you
need them, you will have to create them.

23.3.3. Adding or removing permissions from a Permission Group

First, we will remove a permission from the Staff group.
	
From the list of Permission Groups, click on Staff.

	
In the right pane, click on the Group Permissions tab. You will now see a
 list of permissions that this group has.

	
From the list, choose CREATE_CONTAINER. This will now be highlighted.

	
Click the Delete Selected button. CREATE_CONTAINER will be deleted from the
 list. The system will not ask for a confirmation. If you delete something by
 accident, you will have to add it back.

	
Click the Save Changes button.

You can select a group of individual items by holding down the Ctrl key and
clicking on them. You can select a list of items by clicking on the first item,
holding down the Shift key, and clicking on the last item in the list that
you want to select.
Now, we will add the permission we just removed back to the Staff group.
	
From the list of Permission Groups, click on Staff.

	
In the right pane, click on the Group Permissions tab.

	
Click on the New Mapping button. The permission mapping dialog box will
 appear.

	
From the Permission drop down list, choose CREATE_CONTAINER.

	
From the Depth drop down list, choose Consortium.

	
Click the checkbox for Grantable.

	
Click the Add Mapping button. The new permission will now appear in the
 Group Permissions window.

	
Click the Save Changes button.

If you have saved your changes and you don’t see them, you may have to click
the Reload button in the upper left side of the staff client screen.

23.4. Managing role-based permission groups in the staff client

Main permission groups are granted in the staff client through Edit in the patron record using the Main (Profile) Permission Group field. Additional permission
groups can be granted using secondary permission groups.
23.4.1. Secondary Group Permissions

The Secondary Groups button functionality enables supplemental permission
groups to be added to staff accounts. The CREATE_USER_GROUP_LINK and
REMOVE_USER_GROUP_LINK permissions are required to display and use this
feature.
In general when creating a secondary permission group do not grant the
permission to login to Evergreen.
Granting Secondary Permissions Groups

	
Open the account of the user you wish to grant secondary permission group to.

	
Click Edit.

	
Click Secondary Groups, located to the right of the Main (Profile) Permission Group.

[image: Secondary Permissions Group]

	
From the dropdown menu select one of the secondary permission groups.

[image: Secondary Permission Group List]

	
Click Add.

	
Click Save.

[image: Secondary Permission Group Save]

	
Click Save in the top right hand corner of the Edit Screen to save the user’s account.

Removing Secondary Group Permissions

	
Open the account of the user you wish to remove the secondary permission group from.

	
Click Edit.

	
Click Secondary Groups, located to the right of the Main (Profile) Permission Group.

[image: Secondary Permissions Group]

	
Click Delete beside the permission group you would like to remove.

[image: Secondary Permissions Group Delete]

	
Click Save.

[image: Secondary Permissions Group Save]

	
Click Save in the top right hand corner of the Edit Screen to save the user’s account.

23.5. Managing role-based permission groups in the database

While the ability to assign a user to multiple permission groups has existed in
Evergreen for years, a staff client interface is not currently available to
facilitate the work of the Evergreen administrator. However, if you or members
of your team are comfortable working directly with the Evergreen database, you
can use this approach to separate the borrowing profile of your users from the
permissions that you grant to staff, while minimizing the amount of overlapping
permissions that you need to manage for a set of permission groups that would
otherwise multiply exponentially to represent all possible combinations of
staff roles.
In the following example, we create three new groups:
	
a Student group used to determine borrowing privileges

	
a Student Cataloger group representing a limited set of cataloging
 permissions appropriate for students

	
a Student Circulator group representing a limited set of circulation
 permissions appropriate for students

Then we add three new users to our system: one who needs to perform some
cataloging duties as a student; one who needs perform some circulation duties
as a student; and one who needs to perform both cataloging and circulation
duties. This section demonstrates how to add these permissions to the users at
the database level.
To create the Student group, add a new row to the permission.grp_tree table
as a child of the Patrons group:
INSERT INTO permission.grp_tree (name, parent, usergroup, description, application_perm)
SELECT 'Students', pgt.id, TRUE, 'Student borrowers', 'group_application.user.patron.student'
FROM permission.grp_tree pgt
 WHERE name = 'Patrons';
To create the Student Cataloger group, add a new row to the
permission.grp_tree table as a child of the Staff group:
INSERT INTO permission.grp_tree (name, parent, usergroup, description, application_perm)
SELECT 'Student Catalogers', pgt.id, TRUE, 'Student catalogers', 'group_application.user.staff.student_cataloger'
FROM permission.grp_tree pgt
WHERE name = 'Staff';
To create the Student Circulator group, add a new row to the
permission.grp_tree table as a child of the Staff group:
INSERT INTO permission.grp_tree (name, parent, usergroup, description, application_perm)
SELECT 'Student Circulators', pgt.id, TRUE, 'Student circulators', 'group_application.user.staff.student_circulator'
FROM permission.grp_tree pgt
WHERE name = 'Staff';
We want to give the Student Catalogers group the ability to work with MARC
records at the consortial level, so we assign the UPDATE_MARC, CREATE_MARC, and
IMPORT_MARC permissions at depth 0:
WITH pgt AS (
 SELECT id
 FROM permission.grp_tree
 WHERE name = 'Student Catalogers'
)
INSERT INTO permission.grp_perm_map (grp, perm, depth)
SELECT pgt.id, ppl.id, 0
FROM permission.perm_list ppl, pgt
WHERE ppl.code IN ('UPDATE_MARC', 'CREATE_MARC', 'IMPORT_MARC');
Similarly, we want to give the Student Circulators group the ability to check
out copies and record in-house uses at the system level, so we assign the
COPY_CHECKOUT and CREATE_IN_HOUSE_USE permissions at depth 1 (overriding the
same Staff permissions that were granted only at depth 2):
WITH pgt AS (
 SELECT id
 FROM permission.grp_tree
 WHERE name = 'Student Circulators'
) INSERT INTO permission.grp_perm_map (grp, perm, depth)
SELECT pgt.id, ppl.id, 1
FROM permission.perm_list ppl, pgt
WHERE ppl.code IN ('COPY_CHECKOUT', 'CREATE_IN_HOUSE_USE');
Finally, we want to add our students to the groups. The request may arrive in
your inbox from the library along the lines of "Please add Mint Julep as a
Student Cataloger, Bloody Caesar as a Student Circulator, and Grass Hopper as a
Student Cataloguer / Circulator; I’ve already created their accounts and given
them a work organizational unit." You can translate that into the following SQL
to add the users to the pertinent permission groups, adjusting for the
inevitable typos in the names of the users.
First, add our Student Cataloger:
WITH pgt AS (
 SELECT id FROM permission.grp_tree
 WHERE name = 'Student Catalogers'
)
INSERT INTO permission.usr_grp_map (usr, grp)
SELECT au.id, pgt.id
FROM actor.usr au, pgt
WHERE first_given_name = 'Mint' AND family_name = 'Julep';
Next, add the Student Circulator:
WITH pgt AS (
 SELECT id FROM permission.grp_tree
 WHERE name = 'Student Circulators'
)
INSERT INTO permission.usr_grp_map (usr, grp)
SELECT au.id, pgt.id
FROM actor.usr au, pgt
WHERE first_given_name = 'Bloody' AND family_name = 'Caesar';
Finally, add the all-powerful Student Cataloger / Student Circulator:
 WITH pgt AS (
 SELECT id FROM permission.grp_tree
 WHERE name IN ('Student Catalogers', 'Student Circulators')
)
INSERT INTO permission.usr_grp_map (usr, grp)
SELECT au.id, pgt.id
FROM actor.usr au, pgt
WHERE first_given_name = 'Grass' AND family_name = 'Hopper';
While adopting this role-based approach might seem labour-intensive when
applied to a handful of students in this example, over time it can help keep
the permission profiles of your system relatively simple in comparison to the
alternative approach of rapidly reproducing permission groups, overlapping
permissions, and permissions granted on a one-by-one basis to individual users.

Chapter 24. Migrating Patron Data

This section will explain the task of migrating your patron data from comma
delimited files into Evergreen. It does not deal with the process of exporting
from the non-Evergreen system since this process may vary depending on where you
are extracting your patron records. Patron could come from an ILS or it could
come from a student database in the case of academic records.
When importing records into Evergreen you will need to populate 3 tables in your
Evergreen database:
	
actor.usr - The main table for user data

	
actor.card - Stores the barcode for users; Users can have more than 1 card but
only 1 can be active at a given time;

	
actor.usr_address - Used for storing address information; A user can
have more than one address.

Before following the procedures below to import patron data into Evergreen, it
is a good idea to examine the fields in these tables in order to decide on a
strategy for data to include in your import. It is important to understand the
data types and constraints on each field.
	
Export the patron data from your existing ILS or from another source into a
comma delimited file. The comma delimited file used for importing the records
should use Unicode (UTF8) character encoding.

	
Create a staging table. A staging table will allow you to tweak the data before
importing. Here is an example sql statement:

 CREATE TABLE students (
 student_id int, barcode text, last_name text, first_name text, email text,
 address_type text, street1 text, street2 text,
 city text, province text, country text, postal_code text, phone text, profile
 int DEFAULT 2, ident_type int, home_ou int, claims_returned_count int DEFAULT
 0, usrname text, net_access_level int DEFAULT 2, password text
);
Note
The default variables allow you to set default for your library or to populate
required fields in Evergreen if your data includes NULL values.

The data field profile in the above SQL script refers to the user group and should be an
integer referencing the id field in permission.grp_tree. Setting this value will affect
the permissions for the user. See the values in permission.grp_tree for possibilities.
ident_type is the identification type used for identifying users. This is a integer value
referencing config.identification_type and should match the id values of that table. The
default values are 1 for Drivers License, 2 for SSN or 3 for other.
home_ou is the home organizational unit for the user. This value needs to match the
corresponding id in the actor.org_unit table.

	
Copy records into staging table from a comma delimited file.

 COPY students (student_id, last_name, first_name, email, address_type, street1, street2,
 city, province, country, postal_code, phone)
 FROM '/home/opensrf/patrons.csv'
 WITH CSV HEADER;
The script will vary depending on the format of your patron load file (patrons.csv).

	
Formatting of some fields to fit Evergreen filed formatting may be required. Here is an example
of sql to adjust phone numbers in the staging table to fit the evergreen field:

 UPDATE students phone = replace(replace(replace(rpad(substring(phone from 1 for 9), 10, '-') ||
 substring(phone from 10), '(', ''), ')', ''), ' ', '-');
Data “massaging” will be required to fit formats used in Evergreen.

	
Insert records from the staging table into the actor.usr Evergreen table:

 INSERT INTO actor.usr (
 profile, usrname, email, passwd, ident_type, ident_value, first_given_name,
 family_name, day_phone, home_ou, claims_returned_count, net_access_level)
 SELECT profile, students.usrname, email, password, ident_type, student_id,
 first_name, last_name, phone, home_ou, claims_returned_count, net_access_level
 FROM students;

	
Insert records into actor.card from actor.usr .

 INSERT INTO actor.card (usr, barcode)
 SELECT actor.usr.id, students.barcode
 FROM students
 INNER JOIN actor.usr
 ON students.usrname = actor.usr.usrname;
This assumes a one to one card patron relationship. If your patron data import has multiple cards
assigned to one patron more complex import scripts may be required which look
for inactive or active flags.

	
Update actor.usr.card field with actor.card.id to associate active card with the user:

 UPDATE actor.usr
 SET card = actor.card.id
 FROM actor.card
 WHERE actor.card.usr = actor.usr.id;

	
Insert records into actor.usr_address to add address information for users:

 INSERT INTO actor.usr_address (usr, street1, street2, city, state, country, post_code)
 SELECT actor.usr.id, students.street1, students.street2, students.city, students.province,
 students.country, students.postal_code
 FROM students
 INNER JOIN actor.usr ON students.usrname = actor.usr.usrname;

	
Update actor.usr.address with address id from address table.

 UPDATE actor.usr
 SET mailing_address = actor.usr_address.id, billing_address = actor.usr_address.id
 FROM actor.usr_address
 WHERE actor.usr.id = actor.usr_address.usr;
This assumes 1 address per patron. More complex scenarios may require more sophisticated SQL.
24.1. Creating an sql Script for Importing Patrons

The procedure for importing patron can be automated with the help of an sql script. Follow these
steps to create an import script:
	
Create an new file and name it import.sql

	
Edit the file to look similar to this:

 BEGIN;

 -- Create staging table.
 CREATE TABLE students (
 student_id int, barcode text, last_name text, first_name text, email text, address_type text,
 street1 text, street2 text, city text, province text, country text, postal_code text, phone
 text, profile int, ident_type int, home_ou int, claims_returned_count int DEFAULT 0, usrname text,
 net_access_level int DEFAULT 2, password text
);

 --Copy records from your import text file
 COPY students (student_id, last_name, first_name, email, address_type, street1, street2, city, province,
 country, postal_code, phone, password)
 FROM '/home/opensrf/patrons.csv' WITH CSV HEADER;

 --Insert records from the staging table into the actor.usr table.
 INSERT INTO actor.usr (
 profile, usrname, email, passwd, ident_type, ident_value, first_given_name, family_name,
 day_phone, home_ou, claims_returned_count, net_access_level)
 SELECT profile, students.usrname, email, password, ident_type, student_id, first_name,
 last_name, phone, home_ou, claims_returned_count, net_access_level FROM students;

 --Insert records from the staging table into the actor.usr table.
 INSERT INTO actor.card (usr, barcode)
 SELECT actor.usr.id, students.barcode
 FROM students
 INNER JOIN actor.usr
 ON students.usrname = actor.usr.usrname;

 --Update actor.usr.card field with actor.card.id to associate active card with the user:
 UPDATE actor.usr
 SET card = actor.card.id
 FROM actor.card
 WHERE actor.card.usr = actor.usr.id;

 --INSERT records INTO actor.usr_address from staging table.
 INSERT INTO actor.usr_address (usr, street1, street2, city, state, country, post_code)
 SELECT actor.usr.id, students.street1, students.street2, students.city, students.province,
 students.country, students.postal_code
 FROM students
 INNER JOIN actor.usr ON students.usrname = actor.usr.usrname;

 --Update actor.usr mailing address with id from actor.usr_address table.:
 UPDATE actor.usr
 SET mailing_address = actor.usr_address.id, billing_address = actor.usr_address.id
 FROM actor.usr_address
 WHERE actor.usr.id = actor.usr_address.usr;

 COMMIT;
Placing the sql statements between BEGIN; and COMMIT; creates a transaction
block so that if any sql statements fail, the entire process is canceled and the
database is rolled back to its original state. Lines beginning with — are
comments to let you you what each sql statement is doing and are not processed.

24.2. Batch Updating Patron Data

For academic libraries, doing batch updates to add new patrons to the Evergreen
database is a critical task. The above procedures and import script can be
easily adapted to create an update script for importing new patrons from
external databases. If the data import file contains only new patrons, then, the
above procedures will work well to insert those patrons. However, if the data
load contains all patrons, a second staging table and a procedure to remove
existing patrons from that second staging table may be required before importing
the new patrons. Moreover, additional steps to update address information and
perhaps delete inactive patrons may also be desired depending on the
requirements of the institution.
After developing the scripts to import and update patrons have been created,
another important task for library staff is to develop an import strategy and
schedule which suits the needs of the library. This could be determined by
registration dates of your institution in the case of academic libraries. It is
important to balance the convenience of patron loads and the cost of processing
these loads vs staff adding patrons manually.

Chapter 25. Migrating from a legacy system

When you migrate to Evergreen, you generally want to migrate the bibliographic
records and copy information that existed in your previous library system. For
anything more than a few thousand records, you should import the data directly
into the database rather than use the tools in the staff client. While the data
that you can extract from your legacy system varies widely, this section
assumes that you or members of your team have the ability to write scripts and
are comfortable working with SQL to manipulate data within PostgreSQL. If so,
then the following section will guide you towards a method of generating common
data formats so that you can then load the data into the database in bulk.
25.1. Making electronic resources visible in the catalog

Electronic resources generally do not have any call number or copy information
associated with them, and Evergreen enables you to easily make bibliographic
records visible in the public catalog within sections of the organizational
unit hierarchy. For example, you can make a set of bibliographic records
visible only to specific branches that have purchased licenses for the
corresponding resources, or you can make records representing publicly
available electronic resources visible to the entire consortium.
Therefore, to make a record visible in the public catalog, modify the records
using your preferred MARC editing approach to ensure the 856 field contains the
following information before loading records for electronic resources into
Evergreen:
Table 25.1. 856 field for electronic resources: indicators and subfields
	Attribute 	 Value 	 Note
	Indicator 1
	4
	

	Indicator 2
	0 or 1
	

	Subfield u
	URL for the electronic resource
	

	Subfield y
	Text content of the link
	

	Subfield z
	Public note
	Normally displayed after the link

	Subfield 9
	Organizational unit short name
	The record will be visible when
 a search is performed specifying this organizational unit or one of its
 children. You can repeat this subfield as many times as you need.

Once your electronic resource bibliographic records have the required
indicators and subfields for each 856 field in the record, you can proceed to
load the records using either the command-line bulk import method or the MARC
Batch Importer in the staff client.

25.2. Migrating your bibliographic records

Convert your MARC21 binary records into the MARCXML format, with one record per
line. You can use the following Python script to achieve this goal; just
install the pymarc library first, and adjust the values of the input and
output variables as needed.
#!/usr/bin/env python
-*- coding: utf-8 -*-
import codecs
import pymarc

input = 'records_in.mrc'
output = 'records_out.xml'

reader = pymarc.MARCReader(open(input, 'rb'), to_unicode=True)
writer = codecs.open(output, 'w', 'utf-8')
for record in reader:
 record.leader = record.leader[:9] + 'a' + record.leader[10:]
 writer.write(pymarc.record_to_xml(record) + "\n")
Once you have a MARCXML file with one record per line, you can load the records
into your Evergreen system via a staging table in your database.
	
Connect to the PostgreSQL database using the psql command. For example:

psql -U <user-name> -h <hostname> -d <database>

	
Create a staging table in the database. The staging table is a temporary
 location for the raw data that you will load into the production table or
 tables. Issue the following SQL statement from the psql command line,
 adjusting the name of the table from staging_records_import, if desired:

CREATE TABLE staging_records_import (id BIGSERIAL, dest BIGINT, marc TEXT);

	
Create a function that will insert the new records into the production table
 and update the dest column of the staging table. Adjust
 "staging_records_import" to match the name of the staging table that you plan
 to create when you issue the following SQL statement:

CREATE OR REPLACE FUNCTION staging_importer() RETURNS VOID AS $$
DECLARE stage RECORD;
BEGIN
FOR stage IN SELECT * FROM staging_records_import ORDER BY id LOOP
 INSERT INTO biblio.record_entry (marc, last_xact_id) VALUES (stage.marc, 'IMPORT');
 UPDATE staging_records_import SET dest = currval('biblio.record_entry_id_seq')
 WHERE id = stage.id;
 END LOOP;
 END;
 $$ LANGUAGE plpgsql;

	
Load the data from your MARCXML file into the staging table using the COPY
 statement, adjusting for the name of the staging table and the location of
 your MARCXML file:

COPY staging_records_import (marc) FROM '/tmp/records_out.xml';

	
Load the data from your staging table into the production table by invoking
 your staging function:

SELECT staging_importer();

When you leave out the id value for a BIGSERIAL column, the value in the
column automatically increments for each new record that you add to the table.
Once you have loaded the records into your Evergreen system, you can search for
some known records using the staff client to confirm that the import was
successful.

25.3. Migrating your call numbers, copies, and parts

Holdings, comprised of call numbers, copies, and parts, are the set of
objects that enable users to locate and potentially acquire materials from your
library system.
Call numbers connect libraries to bibliographic records. Each call number has a
label associated with a classification scheme such as a the Library of Congress
or Dewey Decimal systems, and can optionally have either or both a label prefix
and a label suffix. Label prefixes and suffixes do not affect the sort order of
the label.
Copies connect call numbers to particular instances of that resource at a
particular library. Each copy has a barcode and must exist in a particular copy
location. Other optional attributes of copies include circulation modifier,
which may affect whether that copy can circulate or for how long it can
circulate, and OPAC visibility, which controls whether that particular copy
should be visible in the public catalog.
Parts provide more granularity for copies, primarily to enable patrons to
place holds on individual parts of a set of items. For example, an encyclopedia
might be represented by a single bibliographic record, with a single call
number representing the label for that encyclopedia at a given library, with 26
copies representing each letter of the alphabet, with each copy mapped to a
different part such as A, B, C, … Z.
To migrate this data into your Evergreen system, you will create another
staging table in the database to hold the raw data for your materials from
which the actual call numbers, copies, and parts will be generated.
Begin by connecting to the PostgreSQL database using the psql command. For
example:
psql -U <user-name> -h <hostname> -d <database>
Create the staging materials table by issuing the following SQL statement:
CREATE TABLE staging_materials (
 bibkey BIGINT, -- biblio.record_entry_id
 callnum TEXT, -- call number label
 callnum_prefix TEXT, -- call number prefix
 callnum_suffix TEXT, -- call number suffix
 callnum_class TEXT, -- classification scheme
 create_date DATE,
 location TEXT, -- shelving location code
 item_type TEXT, -- circulation modifier code
 owning_lib TEXT, -- org unit code
 barcode TEXT, -- copy barcode
 part TEXT
);
For the purposes of this example migration of call numbers, copies, and parts,
we assume that you are able to create a tab-delimited file containing values
that map to the staging table properties, with one copy per line. For example,
the following 5 lines demonstrate how the file could look for 5 different
copies, with non-applicable attribute values represented by \N, and 3 of the
copies connected to a single call number and bibliographic record via parts:
1 QA 76.76 A3 \N \N LC 2012-12-05 STACKS BOOK BR1 30007001122620 \N
2 GV 161 V8 Ref. Juv. LC 2010-11-11 KIDS DVD BR2 30007005197073 \N
3 AE 5 E363 1984 \N \N LC 1984-01-10 REFERENCE BOOK BR1 30007006853385 A
3 AE 5 E363 1984 \N \N LC 1984-01-10 REFERENCE BOOK BR1 30007006853393 B
3 AE 5 E363 1984 \N \N LC 1984-01-10 REFERENCE BOOK BR1 30007006853344 C
Once your holdings are in a tab-delimited format—which, for the purposes of
this example, we will name holdings.tsv--you can import the holdings file
into your staging table. Copy the contents of the holdings file into the
staging table using the COPY SQL statement:
COPY staging_items (bibkey, callnum, callnum_prefix,
 callnum_suffix, callnum_class, create_date, location,
 item_type, owning_lib, barcode, part) FROM 'holdings.tsv';
Generate the copy locations you need to represent your holdings:
INSERT INTO asset.copy_location (name, owning_lib)
 SELECT DISTINCT location, 1 FROM staging_materials
 WHERE NOT EXISTS (
 SELECT 1 FROM asset.copy_location
 WHERE name = location
);
Generate the circulation modifiers you need to represent your holdings:
INSERT INTO config.circ_modifier (code, name, description, sip2_media_type)
 SELECT DISTINCT circmod, circmod, circmod, '001'
 FROM staging_materials
 WHERE NOT EXISTS (
 SELECT 1 FROM config.circ_modifier
 WHERE circmod = code
);
Generate the call number prefixes and suffixes you need to represent your
holdings:
INSERT INTO asset.call_number_prefix (owning_lib, label)
 SELECT DISTINCT aou.id, callnum_prefix
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = sm.owning_lib
 WHERE NOT EXISTS (
 SELECT 1 FROM asset.call_number_prefix acnp
 WHERE callnum_prefix = acnp.label
 AND aou.id = acnp.owning_lib
) AND callnum_prefix IS NOT NULL;

INSERT INTO asset.call_number_suffix (owning_lib, label)
 SELECT DISTINCT aou.id, callnum_suffix
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = sm.owning_lib
 WHERE NOT EXISTS (
 SELECT 1 FROM asset.call_number_suffix acns
 WHERE callnum_suffix = acns.label
 AND aou.id = acns.owning_lib
) AND callnum_suffix IS NOT NULL;
Generate the call numbers for your holdings:
INSERT INTO asset.call_number (
 creator, editor, record, owning_lib, label, prefix, suffix, label_class
)
 SELECT DISTINCT 1, 1, bibkey, aou.id, callnum, acnp.id, acns.id,
 CASE WHEN callnum_class = 'LC' THEN 1
 WHEN callnum_class = 'DEWEY' THEN 2
 END
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = owning_lib
 INNER JOIN asset.call_number_prefix acnp
 ON COALESCE(acnp.label, '') = COALESCE(callnum_prefix, '')
 INNER JOIN asset.call_number_suffix acns
 ON COALESCE(acns.label, '') = COALESCE(callnum_suffix, '')
;
Generate the copies for your holdings:
INSERT INTO asset.copy (
 circ_lib, creator, editor, call_number, location,
 loan_duration, fine_level, barcode
)
 SELECT DISTINCT aou.id, 1, 1, acn.id, acl.id, 2, 2, barcode
 FROM staging_materials sm
 INNER JOIN actor.org_unit aou
 ON aou.shortname = sm.owning_lib
 INNER JOIN asset.copy_location acl
 ON acl.name = sm.location
 INNER JOIN asset.call_number acn
 ON acn.label = sm.callnum
 WHERE acn.deleted IS FALSE
;
Generate the parts for your holdings. First, create the set of parts that are
required for each record based on your staging materials table:
INSERT INTO biblio.monograph_part (record, label)
 SELECT DISTINCT bibkey, part
 FROM staging_materials sm
 WHERE part IS NOT NULL AND NOT EXISTS (
 SELECT 1 FROM biblio.monograph_part bmp
 WHERE sm.part = bmp.label
 AND sm.bibkey = bmp.record
);
Now map the parts for each record to the specific copies that you added:
INSERT INTO asset.copy_part_map (target_copy, part)
 SELECT DISTINCT acp.id, bmp.id
 FROM staging_materials sm
 INNER JOIN asset.copy acp
 ON acp.barcode = sm.barcode
 INNER JOIN biblio.monograph_part bmp
 ON bmp.record = sm.bibkey
 WHERE part IS NOT NULL
 AND part = bmp.label
 AND acp.deleted IS FALSE
 AND NOT EXISTS (
 SELECT 1 FROM asset.copy_part_map
 WHERE target_copy = acp.id
 AND part = bmp.id
);
At this point, you have loaded your bibliographic records, call numbers, call
number prefixes and suffixes, copies, and parts, and your records should be
visible to searches in the public catalog within the appropriate organization
unit scope.

25.4. TPac Configuration and Customization

25.4.1. Template toolkit documentation

For more general information about template toolkit see: official
documentation.
The purpose of this chapter is to focus on the
Evergreen-specific uses of Template Toolkit (TT) in the OPAC.

25.4.2. TPAC URL

The URL for the TPAC on a default Evergreen system is
http://localhost/eg/opac/home (adjust localhost to match your hostname or IP
address, naturally!)

25.4.3. Perl modules used directly by TPAC

	
Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader.pm

	
Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Account.pm

	
Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Container.pm

	
Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Record.pm

	
Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Search.pm

	
Open-ILS/src/perlmods/lib/OpenILS/WWW/EGCatLoader/Util.pm

25.4.4. Default templates

The source template files are found in Open-ILS/src/templates/opac.
These template files are installed in /openils/var/templates/opac.
NOTE. You should generally avoid touching the installed default template files,
unless you are contributing changes that you want Evergreen to adopt as a new
default. Even then, while you are developing your changes, consider using
template overrides rather than touching the installed templates until you are
ready to commit the changes to a branch. See below for information on template
overrides.

25.4.5. Apache configuration files

The base Evergreen configuration file on Debian-based systems can be found in
/etc/apache2/sites-enabled/eg.conf. This file defines the basic virtual host
configuration for Evergreen (hostnames and ports), then single-sources the
bulk of the configuration for each virtual host by including
/etc/apache2/eg_vhost.conf.

25.4.6. TPAC CSS and media files

The CSS files used by the default TPAC templates are stored in the repo in
Open-ILS/web/css/skin/default/opac/ and installed in
/openils/var/web/css/skin/default/opac/.
The media files—mostly PNG images—used by the default TPAC templates are
stored in the repo in Open-ILS/web/images/ and installed in
/openils/var/web/images/.

25.4.7. Mapping templates to URLs

The mapping for templates to URLs is straightforward. Following are a few
examples, where <templates> is a placeholder for one or more directories
that will be searched for a match:
	
http://localhost/eg/opac/home ⇒ /openils/var/<templates>/opac/home.tt2

	
http://localhost/eg/opac/advanced ⇒ /openils/var/<templates>/opac/advanced.tt2

	
http://localhost/eg/opac/results ⇒ /openils/var/<templates>/opac/results.tt2

The template files themselves can process, be wrapped by, or include other
template files. For example, the home.tt2 template currently involves a
number of other template files to generate a single HTML file:
Example Template Toolkit file: opac/home.tt2.

[% PROCESS "opac/parts/header.tt2";
 WRAPPER "opac/parts/base.tt2";
 INCLUDE "opac/parts/topnav.tt2";
 ctx.page_title = l("Home") %]
 <div id="search-wrapper">
 [% INCLUDE "opac/parts/searchbar.tt2" %]
 </div>
 <div id="content-wrapper">
 <div id="main-content-home">
 <div class="common-full-pad"></div>
 [% INCLUDE "opac/parts/homesearch.tt2" %]
 <div class="common-full-pad"></div>
 </div>
 </div>
[% END %]

We will dissect this example in some more detail later, but the important
thing to note is that the file references are relative to the top of the
template directory.

25.4.8. How to override templates

Overrides for templates go in a directory that parallels the structure of the
default templates directory. The overrides then get pulled in via the Apache
configuration.
In the following example, we demonstrate how to create a file that overrides
the default "Advanced search page" (advanced.tt2) by adding a new templates
directory and editing the new file in that directory.
Adding an override for the Advanced search page (example).

bash$ mkdir -p /openils/var/templates_custom/opac
bash$ cp /openils/var/templates/opac/advanced.tt2 \
 /openils/var/templates_custom/opac/.
bash$ vim /openils/var/templates_custom/opac/advanced.tt2

We now need to teach Apache about the new templates directory. Open eg.conf
and add the following <Location /eg> element to each of the <VirtualHost>
elements in which you want to include the overrides. The default Evergreen
configuration includes a VirtualHost directive for port 80 (HTTP) and another
one for port 443 (HTTPS); you probably want to edit both, unless you want the
HTTP user experience to be different from the HTTPS user experience.
Configuring the custom templates directory in Apache’s eg.conf.

<VirtualHost *:80>
 # <snip>

 # - absorb the shared virtual host settings
 Include eg_vhost.conf
 <Location /eg>
 PerlAddVar OILSWebTemplatePath "/openils/var/templates_algoma"
 </Location>

 # <snip>
</VirtualHost>

Finally, reload the Apache configuration to pick up the changes:
Reloading the Apache configuration.

bash# /etc/init.d/apache2 reload

You should now be able to see your change at http://localhost/eg/opac/advanced
Defining multiple layers of overrides

You can define multiple layers of overrides, so if you want every library in
your consortium to have the same basic customizations, and then apply
library-specific customizations, you can define two template directories for
each library.
In the following example, we define the template_CONS directory as the set of
customizations to apply to all libraries, and template_BR# as the set of
customizations to apply to library BR1 and BR2.
As the consortial customizations apply to all libraries, we can add the
extra template directory directly to eg_vhost.conf:
Apache configuration for all libraries (eg_vhost.conf).

Templates will be loaded from the following paths in reverse order.
PerlAddVar OILSWebTemplatePath "/openils/var/templates"
PerlAddVar OILSWebTemplatePath "/openils/var/templates_CONS"

Then we define a virtual host for each library to add the second layer of
customized templates on a per-library basis. Note that for the sake of brevity
we only show the configuration for port 80.
Apache configuration for each virtual host (eg.conf).

<VirtualHost *:80>
 ServerName br1.concat.ca
 DocumentRoot /openils/var/web/
 DirectoryIndex index.html index.xhtml
 Include eg_vhost.conf
 <Location /eg>
 PerlAddVar OILSWebTemplatePath "/openils/var/templates_BR1"
 </Location>
</VirtualHost>

<VirtualHost *:80>
 ServerName br2.concat.ca
 DocumentRoot /openils/var/web/
 DirectoryIndex index.html index.xhtml
 Include eg_vhost.conf
 <Location /eg>
 PerlAddVar OILSWebTemplatePath "/openils/var/templates_BR2"
 </Location>
</VirtualHost>

25.4.9. Changing some text in the TPAC

Out of the box, the TPAC includes a number of placeholder text and links. For
example, there is a set of links cleverly named Link 1, Link 2, and so on
in the header and footer of every page in the TPAC. Let’s customize that for
our templates_BR1 skin.
To begin with, we need to find the page(s) that contain the text in question.
The simplest way to do that is with the handy utility ack, which is much
like grep but with built-in recursion and other tricks. On Debian-based
systems, the command is ack-grep as ack conflicts with an existing utility.
In the following example, we search for files that contain the text "Link 1":
Searching for text matching "Link 1".

bash$ ack-grep "Link 1" /openils/var/templates/opac
/openils/var/templates/opac/parts/topnav_links.tt2
4: [% l('Link 1') %]

Next, we copy the file into our overrides directory and edit it with vim:
Copying the links file into the overrides directory.

bash$ cp /openils/var/templates/opac/parts/topnav_links.tt2 \
 /openils/var/templates_BR1/opac/parts/topnav_links.tt2
bash$ vim /openils/var/templates_BR1/opac/parts/topnav_links.tt2

Finally, we edit the link text in opac/parts/header.tt2.
Content of the opac/parts/header.tt2 file.

<div id="gold-links-holder">
 <div id="gold-links">
 <div id="header-links">
 [% l('Link 1') %]
 [% l('Link 2') %]
 [% l('Link 3') %]
 [% l('Link 4') %]
 [% l('Link 5') %]
 </div>
 </div>
</div>

For the most part, the page looks like regular HTML, but note the [%_("
")%] that surrounds the text of each link. The [% ... %] signifies a TT
block, which can contain one or more TT processing instructions. l(" ... ");
is a function that marks text for localization (translation); a separate
process can subsequently extract localized text as GNU gettext-formatted PO
files.
NOTE. As Evergreen supports multiple languages, any customizations to Evergreen’s
default text must use the localization function. Also, note that the
localization function supports placeholders such as [_1], [_2] in the text;
these are replaced by the contents of variables passed as extra arguments to
the l() function.
Once we have edited the link and link text to our satisfaction, we can load
the page in our Web browser and see the live changes immediately (assuming
we are looking at the BR1 overrides, of course).

25.4.10. Troubleshooting

If there is a problem such as a TT syntax error, it generally shows up as a
an ugly server failure page. If you check the Apache error logs, you will
probably find some solid clues about the reason for the failure. For example,
in the following example the error message identifies the file in which the
problem occurred as well as the relevant line numbers:
Example error message in Apache error logs.

bash# grep "template error" /var/log/apache2/error_log
[Tue Dec 06 02:12:09 2011] [warn] [client 127.0.0.1] egweb: template error:
 file error - parse error - opac/parts/record/summary.tt2 line 112-121:
 unexpected token (!=)\n [% last_cn = 0;\n FOR copy_info IN
 ctx.copies;\n callnum = copy_info.call_number_label;\n

25.5. Authentication Proxy

To support integration of Evergreen with organizational authentication systems, and to reduce the proliferation of user names and passwords, Evergreen offers a service called open-ils.auth_proxy. If you enable the service, open-ils.auth_proxy supports different authentication mechanisms that implement the authenticate method. You can define a chain of these authentication mechanisms to be tried in order within the <authenticators> element of the opensrf.xml configuration file, with the option of falling back to the native mode that uses Evergreen’s internal method of password authentication.
This service only provides authentication. There is no support for automatic provisioning of accounts. To authenticate using any authentication system, the user account must first be defined in the Evergreen database. The user will be authenticated based on the Evergreen username and must match the user’s ID on the authentication system.
In order to activate Authentication Proxy, the Evergreen system administrator will need to complete the following steps:
	
Edit opensrf.xml.

	
Set the open-ils.auth_proxy app settings enabled tag to true

	
Add the authenticator to the list of authenticators or edit the existing example authenticator:

<authenticator>
 <name>ldap</name>
 <module>OpenILS::Application::AuthProxy::LDAP_Auth</module>
 <hostname>name.domain.com</hostname>
 <basedn>ou=people,dc=domain,dc=com</basedn>
 <authid>cn=username,ou=specials,dc=domain,dc=com</authid>
 <id_attr>uid</id_attr>
 <password>my_ldap_password_for_authid_user</password>
 <login_types>
 <type>staff</type>
 <type>opac</type>
 </login_types>
 <org_units>
 <unit>103</unit>
 <unit>104</unit>
 </org_units>
</authenticator>
	
name : Used to identify each authenticator.

	
module : References to the perl module used by Evergreen to process the request.

	
hostname : Hostname of the authentication server.

	
basedn : Location of the data on your authentication server used to authenticate users.

	
authid : Administrator ID information used to connect to the Authentication server.

	
id_attr : Field name in the authenticator matching the username in the Evergreen database.

	
password : Administrator password used to connect to the authentication server. Password for the authid.

	
login_types : Specifies which types of logins will use this authenticator. This might be useful if staff use a different LDAP directory than general users.

	
org_units : Specifies which org units will use the authenticator. This is useful in a consortium environment where libraries will use separate authentication systems.

	
Restart Evergreen and Apache to activate configuration changes.

Tip
If using proxy authentication with library employees that will use the Admin > Change Operator: New feature in the client software, then add "temp" as a login_types.

25.6. Apache Rewrite Tricks

It is possible to use Apache’s Rewrite Module features to perform a number of
useful tricks that can make people’s lives much easier.
25.6.1. Short URLs

Making short URLs for common destinations can simplify making printed media as
well as shortening or simplifying what people need to type. These are also easy
to add and require minimal maintenance, and generally can be implemented with a
single line addition to your eg_vhost.conf file.
My Account - http://host.ext/myaccount -> My Account Page
RewriteRule ^/myaccount https://%{HTTP_HOST}/eg/opac/myopac/main [R]

ISBN Search - http://host.ext/search/isbn/<ISBN NUMBER> -> Search Page
RewriteRule ^/search/isbn/(.*) /eg/opac/results?_special=1&qtype=identifier|isbn&query=$1 [R]

25.6.2. Domain Based Content with RewriteMaps

One creative use of Rewrite features is domain-based configuration in a single
eg_vhost.conf file. Regardless of how many VirtualHost blocks use the
configuration you don’t need to duplicate things for minor changes, and can in
fact use wildcard VirtualHost blocks to serve multiple subdomains.
For the wildcard blocks you will want to use a ServerAlias directive, and for
SSL VirtualHost blocks ensure you have a wildcard SSL certificate.
ServerAlias *.example.com
For actually changing things based on the domain, or subdomain, you can use
RewriteMaps. Each RewriteMap is generally a lookup table of some kind. In the
following examples we will generally use text files, though database lookups
and external programs are also possible.
Note that in the examples below we generally store things in Environment
Variables. From within Template Toolkit templates you can access environment
variables with the ENV object.
Template Toolkit ENV example, link library name/url if set.

[% IF ENV.eglibname && ENV.egliburl %][% ENV.eglibname %][% END %]

The first lookup to do is a domain to identifier, allowing us to re-use
identifiers for multiple domains. In addition we can also supply a default
identifier, for when the domain isn’t present in the lookup table.
Apache Config.

This internal map allows us to lowercase our hostname, removing case issues in our lookup table
If you prefer uppercase you can use "uppercase int:toupper" instead.
RewriteMap lowercase int:tolower
This provides a hostname lookup
RewriteMap eglibid txt:/openils/conf/libid.txt
This stores the identifier in a variable (eglibid) for later use
In this case CONS is the default value for when the lookup table has no entry
RewriteRule . - [E=eglibid:${eglibid:${lowercase:%{HTTP_HOST}}|CONS}]

Contents of libid.txt File.

Comments can be included
Multiple TLDs for Branch 1
branch1.example.com BRANCH1
branch1.example.net BRANCH1
Branches 2 and 3 don't have alternate TLDs
branch2.example.com BRANCH2
branch3.example.com BRANCH3

Once we have identifiers we can look up other information, when appropriate.
For example, say we want to look up library names and URLs:
Apache Config.

Library Name Lookup - Note we provide no default in this case.
RewriteMap eglibname txt:/openils/conf/libname.txt
RewriteRule . - [E=eglibname:${eglibname:%{ENV:eglibid}}]
Library URL Lookup - Also with no default.
RewriteMap egliburl txt:/openils/conf/liburl.txt
RewriteRule . - [E=egliburl:${egliburl:%{ENV:eglibid}}]

Contents of libname.txt File.

Note that we cannot have spaces in the "value", so instead is used. is also an option.
BRANCH1 Branch One
BRANCH2 Branch Two
BRANCH3 Branch Three
CONS Example Consortium Name

Contents of liburl.txt File.

BRANCH1 http://branch1.example.org
BRANCH2 http://branch2.example.org
BRANCH3 http://branch3.example.org
CONS http://example.org

Or, perhaps set the "physical location" variable for default search/display library:
Apache Config.

Lookup "physical location" IDs
RewriteMap eglibphysloc txt:/openils/conf/libphysloc.txt
Note: physical_loc is a variable used in the TTOPAC and should not be re-named
RewriteRule . - [E=physical_loc:${eglibphysloc:%{ENV:eglibid}}]

Contents of libphysloc.txt File.

BRANCH1 4
BRANCH2 5
BRANCH3 6
CONS 1

Going further, you could also replace files to be downloaded, such as images or
stylesheets, on the fly:
Apache Config.

Check if a file exists based on eglibid and the requested file name
Say, BRANCH1/opac/images/main_logo.png
RewriteCond %{DOCUMENT_ROOT}/%{ENV:eglibid}%{REQUEST_URI} -f
Serve up the eglibid version of the file instead
RewriteRule (.*) /%{ENG:eglibid}$1

Note that template files themselves cannot be replaced in that manner.

25.7. Apache Access Handler Perl Module

The OpenILS::WWW::AccessHandler Perl module is intended for limiting patron
access to configured locations in Apache. These locations could be folder
trees, static files, non-Evergreen dynamic content, or other Apache
features/modules. It is intended as a more patron-oriented and transparent
version of the OpenILS::WWW::Proxy and OpenILS::WWW:Proxy::Authen modules.
Instead of using Basic Authentication the AccessHandler module instead redirects
to the OPAC for login. Once logged in additional checks can be performed, based
on configured variables:
	
Permission Checks (at Home OU or specified location)

	
Home OU Checks (Org Unit or Descendant)

	
"Good standing" Checks (Not Inactive or Barred)

Use of the module is a simple addition to a Location block in Apache:
<Location /path/to/be/protected>
 PerlAccessHandler OpenILS::WWW::AccessHandler
 # For each option you wish to set:
 PerlSetVar OPTION "VALUE"
</Location>
The available options are:
	
OILSAccessHandlerLoginURL

	
 Default: /eg/opac/login
 The page to redirect to when Login is needed

	
OILSAccessHandlerLoginURLRedirectVar

	
 Default: redirect_to
 The variable the login page wants the "destination" URL stored in

	
OILSAccessHandlerFailURL

	
 Default: <unset>
 URL to go to if Permission, Good Standing, or Home OU checks fail. If not set
 a 403 error is generated instead. To customize the 403 you could use an
 ErrorDocument statement.

	
OILSAccessHandlerCheckOU

	
 Default: <User Home OU>
 Org Unit to check Permissions at and/or to load Referrer from. Can be a
 shortname or an ID.

	
OILSAccessHandlerPermission

	
 Default: <unset>
 Permission, or comma- or space-delimited set of permissions, the user must have to
 access the protected area.

	
OILSAccessHandlerGoodStanding

	
 Default: 0
 If set to a true value the user must be both Active and not Barred.

	
OILSAccessHandlerHomeOU

	
 Default: <unset>
 An Org Unit, or comma- or space-delimited set of Org Units, that the user’s Home OU must
 be equal to or a descendant of to access this resource. Can be set to
 shortnames or IDs.

	
OILSAccessHandlerReferrerSetting

	
 Default: <unset>
 Library Setting to pull a forced referrer string out of, if set.

As the AccessHandler module does not actually serve the content it is
protecting, but instead merely hands control back to Apache when it is done
authenticating, you can protect almost anything else you can serve with Apache.
25.7.1. Use Cases

The general use of this module is "protect access to something else" - what that
something else is will vary. Some possibilities:
	
Apache features

	
Automatic Directory Indexes

	
Proxies (see below)

	
Electronic Databases

	
Software on other servers/ports

	
Non-Evergreen software

	
Timekeeping software for staff

	
Specialized patron request packages

	
Static files and folders

	
Semi-public Patron resources

	
Staff-only downloads

25.7.2. Proxying Websites

One potentially interesting use of the AccessHandler module is to protect an
Apache Proxy configuration. For example, after installing and enabling
mod_proxy, mod_proxy_http, and mod_proxy_html you could proxy websites like so:
<Location /proxy/>
 # Base "Rewrite URLs" configuration
 ProxyHTMLLinks a href
 ProxyHTMLLinks area href
 ProxyHTMLLinks link href
 ProxyHTMLLinks img src longdesc usemap
 ProxyHTMLLinks object classid codebase data usemap
 ProxyHTMLLinks q cite
 ProxyHTMLLinks blockquote cite
 ProxyHTMLLinks ins cite
 ProxyHTMLLinks del cite
 ProxyHTMLLinks form action
 ProxyHTMLLinks input src usemap
 ProxyHTMLLinks head profile
 ProxyHTMLLinks base href
 ProxyHTMLLinks script src for

 # To support scripting events (with ProxyHTMLExtended On)
 ProxyHTMLEvents onclick ondblclick onmousedown onmouseup \
 onmouseover onmousemove onmouseout onkeypress \
 onkeydown onkeyup onfocus onblur onload \
 onunload onsubmit onreset onselect onchange

 # Limit all Proxy connections to authenticated sessions by default
 PerlAccessHandler OpenILS::WWW::AccessHandler

 # Strip out Evergreen cookies before sending to remote server
 RequestHeader edit Cookie "^(.*?)ses=.*?(?:$|;)(.*)$" $1$2
 RequestHeader edit Cookie "^(.*?)eg_loggedin=.*?(?:$|;)(.*)$" $1$2
</Location>

<Location /proxy/example/>
 # Proxy example.net
 ProxyPass http://www.example.net/
 ProxyPassReverse http://www.example.net/
 ProxyPassReverseCookieDomain example.net example.com
 ProxyPassReverseCookiePath / /proxy/example/

 ProxyHTMLEnable On
 ProxyHTMLURLMap http://www.example.net/ /proxy/example/
 ProxyHTMLURLMap / /proxy/mail/
 ProxyHTMLCharsetOut *

 # Limit to BR1 and BR3 users
 PerlSetVar OILSAccessHandlerHomeOU "BR1,BR3"
</Location>
As mentioned above, this can be used for multiple reasons. In addition to
websites such as online databases for patron use you may wish to proxy software
for staff or patron use to make it appear on your catalog domain, or perhaps to
keep from needing to open extra ports in a firewall.

Part V. Local Administration

1. Notifications / Action Triggers

Action Triggers give administrators the ability to set up actions for
specific events. They are useful for notification events such as hold notifications.
To access the Action Triggers module, select Admin → Local Administration → Notifications / Action triggers.
Note
You must have Local Administrator permissions to access the Action Triggers module.

You will notice four tabs on this page: Event Definitions, Hooks, Reactors and Validators.

1.1. Event Definitions

Event Definitions is the main tab and contains the key fields when working with action triggers. These fields include:
Table 1: Action Trigger Event Definitions

	Field
	Description

	Owning Library
	The shortname of the library for which the action / trigger / hook is defined.

	Name
	The name of the trigger event, that links to a trigger event environment containing a set of fields that will be returned to the Validators and/or Reactors for processing.

	Hook
	The name of the trigger for the trigger event. The underlying action_trigger.hook table defines the Fieldmapper class in the core_type column off of which the rest of the field definitions “hang”.

	Enabled
	Sets the given trigger as enabled or disabled. This must be set to enabled for the Action trigger to run.

	Processing Delay
	Defines how long after a given trigger / hook event has occurred before the associated action (“Reactor”) will be taken.

	Processing Delay Context Field
	Defines the field associated with the event on which the processing delay is calculated. For example, the processing delay context field on the hold.capture hook (which has a core_type of ahr) is capture_time.

	Processing Group Context Field
	Used to batch actions based on its associated group.

	Reactor
	Links the action trigger to the Reactor.

	Validator
	The subroutines receive the trigger environment as an argument (see the linked Name for the environment definition) and returns either 1 if the validator is true or 0 if the validator returns false.

	Event Repeatability Delay
	Allows events to be repeated after this delay interval.

	Failure Cleanup
	After an event is reacted to and if there is a failure a cleanup module can be run to clean up after the event.

	Granularity
	Used to group events by how often they should be run. Options are Hourly, Daily, Weekly, Monthly, Yearly, but you may also create new values.

	Max Event Validity Delay
	Allows events to have a range of time that they are valid. This value works with the Processing Delay to define a time range.

	Opt-In Settings Type
	Choose which User Setting Type will decide if this event will be valid for a certain user. Use this to allow users to Opt-In or Opt-Out of certain events.

	Opt-In User Field
	Set to the name of the field in the selected hook’s core type that will link the core type to the actor.usr table.

	Success Cleanup
	After an event is reacted to successfully a cleanup module can be run to clean up after the event.

	Template
	A Template Toolkit template that can be used to generate output. The output may or may not be used by the reactor or another external process.

1.2. Creating Action Triggers

	
From the top menu, select Admin → Local Administration → Notifications / Action triggers.

	
Click on the New button.

	
Select an Owning Library.

	
Create a unique Name for your new action trigger.

	
Select the Hook.

	
Check the Enabled check box.

	
Set the Processing Delay in the appropriate format. E.g. 7 days to run 7 days from the trigger event or 00:01:00 to run 1 hour after the Processing Delay Context Field.

	
Set the Processing Delay Context Field and Processing Group Context Field.

	
Select the Reactor, Validator, Failure Cleanup.

	
Select the Granularity.

	
Set the Max Event Validity Delay.

	
Select the Opt-In Setting Type.

	
Set the Opt-In User Field.

	
Select the Success Cleanup.

	
Enter text in the Template text box if required. These are for email messages. Here is a sample template for sending 90 day overdue notices:

[%- USE date -%]
[%- user = target.0.usr -%]
To: [%- params.recipient_email || user.email %]
From: [%- helpers.get_org_setting(target.home_ou.id, 'org.bounced_emails') || lib.email || params.sender_email || default_sender %]
Subject: Overdue Items Marked Lost
Auto-Submitted: auto-generated
Dear [% user.family_name %], [% user.first_given_name %]
The following items are 90 days overdue and have been marked LOST.
[%- params.recipient_email || user.email %][%- params.sender_email || default_sender %]
[% FOR circ IN target %]
 Title: [% circ.target_copy.call_number.record.simple_record.title %]
 Barcode: [% circ.target_copy.barcode %]
 Due: [% date.format(helpers.format_date(circ.due_date), '%Y-%m-%d') %]
 Item Cost: [% helpers.get_copy_price(circ.target_copy) %]
 Total Owed For Transaction: [% circ.billable_transaction.summary.total_owed %]
 Library: [% circ.circ_lib.name %]
[% END %]
[% FOR circ IN target %]
 Title: [% circ.target_copy.call_number.record.simple_record.title %]
 Barcode: [% circ.target_copy.barcode %]
 Due: [% date.format(helpers.format_date(circ.due_date), '%Y-%m-%d') %]
 Item Cost: [% helpers.get_copy_price(circ.target_copy) %]
 Total Owed For Transaction: [% circ.billable_transaction.summary.total_owed %]
 Library: [% circ.circ_lib.name %]
[% END %]

	
Once you are satisfied with your new event trigger, click the Save button located at the bottom of the form.

Tip
A quick and easy way to create new action triggers is to clone an existing action trigger.

Cloning Existing Action Triggers

	
Check the check box next to the action trigger you wish to clone.

	
Click Clone Selected on the top left of the page.

	
An editing window will open. Notice that the fields will be populated with content from the cloned action trigger. Edit as necessary and give the new action trigger a unique Name.

	
Click Save.

Editing Action Triggers

	
Double-click on the action trigger you wish to edit.

	
The edit screen will appear. When you are finished editing, click Save at the bottom of the form. Or click Cancel to exit the screen without saving.

Note
Before deleting an action trigger, you should consider disabling it through the editing form. This way you can keep it for future use or cloning.

Deleting Action Triggers

	
Check the check box next to the action trigger you wish to delete

	
Click Delete Selected on the top-right of the page.

Hooks

Hooks define the Fieldmapper class in the core_type column off of which the rest of the field definitions “hang”.
	Field
	Description

	Hook Key
	A unique name given to the hook.

	Core Type
	Used to link the action trigger to the IDL class in fm_IDL.xml

	Description
	Text to describe the purpose of the hook.

	Passive
	Indicates whether or not an event is created by direct user action or is circumstantial.

You may also create, edit and delete Hooks but the Core Type must refer to an IDL class in the fm_IDL.xml file.

Reactors

Reactors link the trigger definition to the action to be carried out.
	Field
	Description

	Module Name
	The name of the Module to run if the action trigger is validated. It must be defined as a subroutine in /openils/lib/perl5/OpenILS/Application/Trigger/Reactor.pm or as a module in /openils/lib/perl5/OpenILS/Application/Trigger/Reactor/*.pm.

	Description
	Description of the Action to be carried out.

You may also create, edit and delete Reactors. Just remember that there must be an associated subroutine or module in the Reactor Perl module.

Validators

Validators set the validation test to be preformed to determine whether the action trigger is executed.
	Field
	Description

	Module Name
	The name of the subroutine in /openils/lib/perl5/OpenILS/Application/Trigger/Reactor.pm to validate the action trigger.

	Description
	Description of validation test to run.

You may also create, edit and delete Validators. Just remember that their must be an associated subroutine in the Reactor.pm Perl module.

1.3. Processing Action Triggers

To run the action triggers, an Evergreen administrator will need to run the trigger processing script. This should be set up as a cron job to run periodically. To run the script, use this command:
/openils/bin/action_trigger_runner.pl --process-hooks --run-pending
You have several options when running the script:
	
--run-pending: Run pending events to send emails or take other actions as
specified by the reactor in the event definition.

	
--process-hooks: Create hook events

	
--osrf-config=[config_file]: OpenSRF core config file. Defaults to:
/openils/conf/opensrf_core.xml

	
--custom-filters=[filter_file]: File containing a JSON Object which describes any hooks
that should use a user-defined filter to find their target objects. Defaults to:
/openils/conf/action_trigger_filters.json

	
--max-sleep=[seconds]: When in process-hooks mode, wait up to [seconds] for the lock file to go
away. Defaults to 3600 (1 hour).

	
--hooks=hook1[,hook2,hook3,…]: Define which hooks to create events for. If none are defined, it
defaults to the list of hooks defined in the --custom-filters option.
Requires --process-hooks.

	
--granularity=[label]: Limit creating events and running pending events to
those only with [label] granularity setting.

	
--debug-stdout: Print server responses to STDOUT (as JSON) for debugging.

	
--lock-file=[file_name]: Sets the lock file for the process.

	
--verbose: Show details of script processing.

	
--help: Show help information.

Examples:
	
Run all pending events that have no granularity set. This is what you tell
CRON to run at regular intervals.

perl action_trigger_runner.pl --run-pending

	
Batch create all "checkout.due" events

perl action_trigger_runner.pl --hooks=checkout.due --process-hooks

	
Batch create all events for a specific granularity and to send notices for all
pending events with that same granularity.

perl action_trigger_runner.pl --run-pending --granularity=Hourly --process-hooks

Part VI. Cataloging Administration

Administration
Commandline Adminitstrator!
The Evergreen database already contains information from the Library of Congress' MARC 21 format standards that includes possible values for select fixed fields. Users may also add values to these and other fixed fields through the MARC Coded Value Maps interface. Once new values are added, the right-click context menu for the selected fixed field will display those values in the MARC Editor for any Record Type that utilizes that fixed field.
There are three relevant tables that contain the values that display in the fixed field context menu options:
	
config.marc21_ff_pos_map describes, for the given record type, where a fixed field is located, its start position, and its length.

	
config.coded_value_map defines the set of valid values for many of the fixed fields and the translatable, human-friendly labels for them.

	
config.record_attr_definition links together the information from the config.marc21_ff_pos_map and config.coded_value_map tables.

Administration
keep it for command line administrator!
The information driving the MARC 007 Field Physical Characteristics Wizard is already a part of the Evergreen database. This data can be customized by individual sites and / or updated when the Library of Congress dictates new values or positions in the 007 field.
There are three relevant tables where the information that drives the wizard is stored:
	
config.marc21_physical_characteristic_type_map contains the list of materials, or values, for the positions of the 007 field.

	
config.marc21_physical_characteristic_subfield_map contains rows that list the meaning of the various positions in the 007 field for each Category of Material.

	
config.marc21_physical_characteristic_value_map lists all of the values possible for all of the positions in the config.marc21_physical_characteristic_subfield_map table.

Part VII. Using the Public Access Catalog

Chapter 26. Adding an Evergreen search form to a web page

To enable users to quickly search your Evergreen catalog, you can add a
simple search form to any HTML page. The following code demonstrates
how to create a quick search box suitable for the header of your web
site:
26.1. Simple search form

<form action="http://example.com/eg/opac/results" method="get" accept-charset="UTF-8"> <!-- (1) -->
 <input type="search" alt="Catalog Search" maxlength="200"
 size="20" name="query"
 placeholder="Search catalog for..." />
 <input type="hidden" name="qtype" value="keyword" /> <!-- (2) -->
 <input type="hidden" name="locg" value="4" /> <!-- (3) -->
 <input type="submit" value="Search" />
</form>
	(1)
	
Replace 'example.com' with the hostname for your catalog. To link to
 the Kid’s OPAC instead of the TPAC, replace 'opac' with 'kpac'.

	(2)
	
Replace 'keyword' with 'title', 'author', 'subject', or 'series'
 if you want to provide more specific searches. You can even specify
 'identifier|isbn' for an ISBN search.

	(3)
	
Replace '4' with the ID number of the organizational unit at which you
 wish to anchor your search. This is the value of the 'locg' parameter in
 your normal search.

26.2. Advanced search form

<form role="search" id="searchForm" method="get" class="searchform" action="http://your_catalog/eg/opac/results" accept-charset="UTF-8">
 <label id="searchLabel" for="search">Search the Catalog: </label>
 <input type="search" value="" name="query" id="search" size="30">
 <label id="search_qtype_label">Type:
 <select name="qtype" id="qtype" aria-label="Select query type:">
 <option value='keyword' selected="selected">Keyword</option>
 <option value='title'>Title</option>
 <option value='jtitle'>Journal Title</option>
 <option value='author'>Author</option>
 <option value='subject'>Subject</option>
 <option value='series'>Series</option>
 </select>
 </label>

 <label id="search_itype_label">Format:
 <select id='item_type_selector' name='fi:item_type' aria-label="Select item type:">
 <option value=''>All Formats</option>
 <option value='a'>Books and Journals</option>
 <option value='i'>Nonmusical Sound Recording</option>
 <option value='j'>Musical Sound Recording</option>
 <option value='g'>Video</option>
 </select>
 </label>

 <label id="search_locg_label">Library:
 <select aria-label='Select search library' name='locg'>
 <option value='1' class="org_unit">
 All Libraries
 </option>
 <option value='2' selected="selected" class="org_unit">
 Central Library
 </option>
 <option value='10' class="org_unit">
 Little Library
 </option>
 </select>
 </label>
 <input class="searchbutton" type="submit" value="SEarch" />
</form>

26.3. Encoding

For non English characters it is vital to set the attribute accept-charset="UTF-8" in the form tag (as in the examples above). If the parameter is not set, records with non English characters will not be retrieved.

26.4. Setting the document type

You can set the document types to be searched using the attribute option value= in the form. For the value use MARC 21 code defining the type of record (i.e. Leader, position 06).
For example, for musical recordings you could use <option value='j'>Musical Sound Recording</option>

26.5. Setting the library

Instead of searching the entire consortium, you can set the Library to be searched in using the attribute option value= in the form. For the value use Evergreen database.organization unit ID.

Appendix A. Admonitions

	
Note

[image: media/note.png]

	
warning

[image: media/warning.png]

	
caution

[image: media/caution.png]

	
tip

[image: media/tip.png]

Index

A
	action triggers
		event definitions
		notifications, Notifications / Action Triggers

	Apache, Upgrade the Evergreen code
	authentication
		LDAP, Authentication Proxy
	proxy, Authentication Proxy

D
	database schema, Upgrade the Evergreen database schema
	Debian, Upgrade the Evergreen code

E
	event definitions
		notifications, Notifications / Action Triggers

I
	installation
		Linux, Installing on Linux
	Windows, Installing on Windows

L
	LDAP, Authentication Proxy
	Linux, Installing on Linux
		Debian, Upgrade the Evergreen code
	Ubuntu, Upgrade the Evergreen code

N
	notifications, Notifications / Action Triggers

P
	proxy, Authentication Proxy

R
	registering a workstation, Registering a Workstation
	removing user preferences, Removing Staff Client Preferences
	removing user settings, Removing Staff Client Preferences

S
	staff client
		installation
		Linux, Installing on Linux
	Windows, Installing on Windows

	registering a workstation, Registering a Workstation
	removing user preferences, Removing Staff Client Preferences
	removing user settings, Removing Staff Client Preferences

U
	Ubuntu, Upgrade the Evergreen code

W
	Windows, Installing on Windows

OEBPS/media/staff_client_installation_2.png
Choose Start Menu Folder

Choose a Start Menu folder fo the Evergreen Staff Client 2.3
2.3.1shortauts.

Select the Start Menu foder in which you wouid like to reate the program's shortauts, You
an aiso enter a name to create a new foder.

|adobe
|Adobe Design Premium CS4
|Android SDK Tooks
|Applcaton Verifier

|Aoplicaton Verifer (64)
|Blender Foundation

|Core Appicatons
|Cutepor

[Debuigging Toois for Windows (464)

|oel Viebcam 5]

Hulsoft InstalSysterm v2.46-7

[Rccessories
|Adminisrative Tools

OEBPS/media/warning.png

OEBPS/media/note.png

OEBPS/media/staff_client_installation_1.png
Choose Install Location

Choose the foder in which to nstall Evergreen Staff Client 2.3
231

Setup wil nstal Evergreen Staff Clent 2.3 2.3 11n the folowing folder. To nstallina
different folder, cick Browse and select another foder. Click Next to contnue.

Hulsoft InstalSystern v2.46-7

OEBPS/media/sup-permissions-1.png
Secondary Groups

OEBPS/media/caution.png

OEBPS/media/sup-permissions-3.png
Secondary Permission Groups

Assign additional permission groups to users here.
“This does not affect circulation policy.

Acq Basic Selector Delete.

|Save |

OEBPS/media/sup-permissions-2.png
Secondary Permission Groups

Assign additional permission groups to users here.

“This does not affect circulation policy.

a1

PL Extended Loans
PL No-fines
PLILL

PL Home Senices
PL Resticted Access
PL Non Resident
PL Federation
PL Adult
PL Custom
Public Library Staff
PL Cataloguer
PL Circulator
PL Circ +Full Cat
PL Circ +Copy Edit
PL General Staff
‘Govemment Library Users
‘Govemment Library Patrons
Govemment Library Staff

‘Acq Basic Selector

Acq Adv. Selector

Acq Purchaser

Add

OEBPS/media/tip.png

OEBPS/images/icons/callouts/8.png

OEBPS/images/icons/callouts/7.png

OEBPS/images/icons/callouts/6.png

OEBPS/media/staff_client_installation_0.png
Welcome to the Evergreen Staff
Client 2 3.1 Setup Wizard

This wizard wil guide you through the instalation of
Evergreen Staff Cient 2.32.3.1.

Itis recommended that you dose al other appications
before starting Setup. Tris il make it possble o update
relevant system fles without having to reboot your
computer.

Clck Next to contine.

OEBPS/images/icons/callouts/5.png

OEBPS/images/icons/callouts/9.png

OEBPS/media/sup-permissions-4.png
Secondary Permission Groups
Assign addiional permission groups to users here.
“This does not affect circulation policy.

lete.

Acq Basic Selector

=] [as]

OEBPS/media/sup-permissions-5.png
Secondary Permission Groups

Assign additional permission groups to users here.
“This does not affect circulation policy.

52 Add

| Save |

OEBPS/images/icons/callouts/10.png

OEBPS/media/staff_client_installation_4.png
Workstation
WSName [workstation_hame

Organization ‘ FENNELL

| Register | | Help

OEBPS/images/icons/callouts/4.png

OEBPS/images/icons/callouts/3.png

OEBPS/images/icons/callouts/2.png

OEBPS/images/icons/callouts/1.png

OEBPS/media/staff_client_installation_3.png
Completing the Evergreen Staff
Client 2.3 2.3.1 Setup Wizard

Everreen Staff Clent 2.3 2.3.1 has been installd on your
computer.

Clck Finsh to dose ths wizard.

[¥ Run Evergreen Staff Client 2.3 2.3.1

<ok Cancel

